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Chapter 1

Introduction

Fluid flow is present everywhere around and inside us. We can think of the
blood running through our vessels and the air flowing into our lungs. Fluid also
flows around the vehicles we use. In combustion chambers of their engines, fuel
is mixed with an oxidizer [63]. Fluid flow also exists at much larger dimensions,
for example the flow of air in our atmosphere, i.e., the weather. As a final
example, we show the flow of water in the Dutch Deltaworks in Figure 1.1.
This photo displays the wakes that emerge downstream of the piers.

Figure 1.1: This dam is part of the defenses against the sea erected in the
Netherlands; province of Zeeland [84]. The wakes behind the piers are clearly
visible. The water flows from the lower right side to the upper left side.

1



2 1. Introduction

A detailed knowledge of the flow characteristics is of crucial importance in
order to understand all these systems and subsequently, e.g., optimize some of
their specific properties. A better understanding can for example reduce the
aerodynamic drag of an airplane or improve the efficiency of an engine. Even
a small improvement may save enormous amounts of fuel. Another example is
the suit employed by some professional swimmers. Its surface has a carefully
designed roughness pattern and some people think this improves the efficiency
of moving through the water. However, the understanding and prediction of
flow phenomena is often complicated because turbulence plays a key role in
many of these flows. Turbulence involves the presence of many interacting flow
features which occur at a variety of lengthscales. The research is complicated
by the presence of a large range of scales that all should be taken into account.
This is poetically paraphrased in the following ‘Sonnet to Turbulence’, written
by Corrsin (see ref. [35]):

Shall we compare you to a laminar flow?
You are more lovely and more sinuous.
Rough winter winds shake branches free of snow,
And summer’s plumes churn up in cumulus.

How do we perceive you? Let me count the ways.
A random vortex field with strain entwined.
Fractal? Big and small swirls in the maze
May give us paradigms of flows to find.

Orthonormal forms nonlinearly renew
Intricate flows with many free degrees
Or, in the latest fashion, merely few –
As strange attractor. In fact, we need Cray 3’s.

Experiment and theory, unforgiving;
For serious searcher, fun . . . and it’s a living!

Turbulence is present in almost all flows of practical engineering interest.
Therefore it is useful to describe turbulence in a more quantitative way, but
we first give examples in which a state of turbulent flow is readily attained.
When we open a tap a little bit, we have laminar flow: water pours out in a
smooth jet [63]. Fully opening the tap, however, results in a more vivid and
sinuous pattern which is called turbulent flow. In spite of its bad reputation
in daily life, only the specific application determines whether the presence of
turbulence is beneficial or not. The occurrence of turbulence in flow around
an airfoil should be minimized because it increases the drag of the airplane.
In contrast, we take advantage of turbulence to reach an efficient mixing of
two fluids. In that case the interface between two regions of unmixed fluids is
increased rapidly as a result of the turbulent flow state. So, turbulence is not
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always an unfortunate phenomenon that should be avoided.
A quantitative way to characterize the state of a fluid requires the dimen-

sionless Reynolds number defined as:

Re =
ρR uR lR

µR
, (1.1)

with ρR, uR, lR and µR a reference density, velocity, length and viscosity,
respectively [75]. It is a measure of the ratio between convective, i.e., destabi-
lizing, and viscous, i.e., stabilizing forces. Flows in which the inertia forces are
sufficiently small compared to viscous forces are laminar flows. The small flow
features are dissipated by the viscous forces. Flows with relatively large Rey-
nolds numbers are generally turbulent. They exhibit a large range of length
and time scales. In fact, turbulence frequently develops as an instability of
laminar flow [107].
Turbulence involves the presence of many different scales in the flow. One

of the first theories of turbulence was proposed by Kolmogorov who introduced
the idea of the energy-cascade [49]. This theory states that energy which is
injected into the large scales of a system statistically is transported to smaller
and smaller scales and finally dissipates at sufficiently small scales. Another
characteristic feature of turbulence is the fact that the exact state of a turbu-
lent flow is unpredictable. Small destabilizing perturbations, which are always
present, can soon become larger because of the strong nonlinear behaviour of
the system at high Reynolds number. Small scales influence the large-scale
and long-term behaviour of the flow. Hence, the small scales should be taken
into account when the large scale behaviour of the system is described. Be-
cause of the highly unstable character of turbulence, typical flow quantities
usually are considered and compared only in a statistical sense. We are inter-
ested to know, e.g., the chance to have rainshowers. However, the exact times
and locations where it will rain is not relevant at this stage.
Physical experiments and numerical simulations are two main directions

of research of fluid flow. Physical experiments have a long history in research.
In the past decades, numerical simulation has become another way to tackle
fluid flow problems. Computational fluid dynamics (CFD) and wind-tunnels
are both used, e.g., for aircraft development in which turbulence is one of the
main issues [63]. Especially in the early design stages of wind-tunnel test-
ing, several key dimensions and other basic parameters of the aircraft are not
yet established. This pioneering research can now be supported by numerical
simulations. Another advantage of using simulations is that one has an exact
knowledge of boundary conditions. Besides, all properties can be computed
throughout the whole domain and the resulting databases permit access to
quantities, such as pressure fluctuations, which are difficult to measure. How-
ever, even today the limits of the most powerful supercomputers make wind-
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tunnel experiments necessary to verify the design of a new airplane at several
stages in the development process [63, 92].
In this thesis we focus on numerical simulations. The numerical simula-

tion of turbulence is based on the Navier-Stokes equations. These represent
the conservation of mass, momentum and energy. In the last decades, super-
computers have become large and powerful enough to tackle these equations
for a number of flows. The simulations that can be performed become larger
and more complex. Important techniques used in the numerical simulation
of turbulence are direct and large-eddy simulations (abbreviated as DNS and
LES respectively). The main purpose of this thesis is to perform DNSs of
the three-dimensional subsonic mixing layer and to subsequently use these re-
sults to test, e.g., features of Reynolds-averaged Navier-Stokes (RaNS) and
subgrid-models in LES. The first section of this chapter is used to introduce
the mixing layer. Typical physical processes that take place are described. An
introduction to the numerical simulation of turbulence and in particular the
turbulent mixing layer is given in section two. Finally we formulate our aims
in more detail in the third section.

1.1 The mixing layer

Turbulent shear flows are characterized by the presence of a shear stress. Three
important examples of turbulent shear flows are the jet, wake and mixing
layer. We start with the jet which arises, e.g., in the flow of water when a tap
is opened and a liquid is injected into the air. A second type of turbulent shear
flow is the wake. It is a flow which emerges downstream of an object. Several
wakes parallel to each other were already shown in Figure 1.1. The outer
velocities in a wake are equal to each other. This is no longer the case for the
mixing layer that forms when two streams of different velocity meet, for exam-
ple when two, initially separated, rivers flow together at different velocities and
start to mix. Mixing layers also occur in many other practical applications,
e.g., combustion devices where oxygen and fuel are mixed [63]. Enhancement
of the mixing of two fluids can be very beneficial in these applications. It may,
for example, result in a cleaner, more efficient combustion.
Before we focus on the mixing layer in particular, we first investigate the

presence of self-similarity. In turbulent shear flows, it is assumed that suf-
ficiently far from inflow boundaries, and for times long after the initial con-
ditions were established, the statistics of the flow can be characterized by
the steady flow features at one downstream location [7]. These so-called self-
similar quantities can be described quite accurately with only one profile and
the evolution of a similarity variable in the self-similar turbulent region. This
implies a considerable collapse of the data. For the DNS results presented in



1.1. The mixing layer 5

this thesis, we study time-averaged quantities to numerically establish, e.g.,
the presence of self-similarity in a mixing layer. Self-similarity is a physical
property that is typical for all turbulent shear flows. We next focus on the
mixing layer in particular. We start with an extensive description of the mix-
ing layer. A dimensionless number which mainly accounts for the amount of
compressibility is introduced. Finally we mention some features that are based
on empirical knowledge from experiments and simulations.
Because of the difference in velocity of the two merging streams in a mixing

layer, a large shear is present which results in vortices that roll-up and merge
while moving downstream. During the pairing process large strain rates oc-
cur and the interface between the two streams increases. A greater interfacial
area provides a more efficient mixing. An instability that results in a tur-
bulent mixing layer is illustrated with an atmospheric example. Figure 1.2
displays a mixing layer in a cloud formation. A shear layer forms between two
parallel atmospheric streams that travel with different velocities. Small per-
turbations grow since the layer is unstable. This instability is a typical feature
in the initial stages of mixing layers and is known as the Kelvin-Helmholtz
instability [8].
It is important that the present results can be compared with those from

other experimental and numerical mixing layer studies. In order to have an
equal setting, next to the Reynolds number mentioned above, also the amount
of compressibility should be equal. In the past decades, compressibility has
been subject of many experimental mixing layer studies [18, 68, 71]. A new
dimensionless number became a popular quantity to account for the com-

Figure 1.2: Kelvin-Helmholtz roll-ups as seen in a cloud formation [84].
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pressibility of mixing layers. Next to the well-known Mach number, denoted
by M∞, the related convective Mach number Mc was introduced [14]. These
two dimensionless numbers are defined as follows:

M∞ =
U1

c1
,

Mc =
U1 − U2

c1 + c2
,

where U1(U2) is the velocity of the upper (lower) free-stream and c1(c2) the cor-
responding speed of sound. In this definition, the ratio between specific heats
(γ = CP/CV ) of both streams is assumed equal. The normalized growth rates
in first order collapse onto a single curve when plotted against the convective
Mach number [53].
In the nineties, compressibility effects of the mixing layer could also be

considered in numerical studies. This was done for the temporal setting in
refs. [79, 103]. Throughout this thesis the dimensionless lower stream veloc-
ity U2 is set to 0.5 U1. The Mach number is set to 0.8, which corresponds to
a convective Mach number of 0.2. The effect of compressibility is negligible
at these parameter values [97]. This convective Mach number is equal to that
from the temporal study in [104] where direct and large-eddy simulations are
performed. As a result, it seems reasonable to compare the present spatial
mixing layer results with temporal mixing layer results at the same convective
Mach number as well as results from incompressible mixing layer experiments.
A characteristic property of the mixing layer is that the most unsta-

ble mode for the present convective Mach number is expected to be two-
dimensional. This does not imply that the whole transition process is two-
dimensional [78]. The most amplified instability wave from linear stability
theory (LST) is two-dimensional for the present case. Further downstream,
where LST does not apply anymore, also three-dimensional features evolve,
triggered by small three-dimensional inflow perturbations.
The convective Mach number has been used to quantify the effects of com-

pressibility in mixing layers [14, 68]. One of the first studies on density effects
in mixing layers was the experiment performed by Brown and Roshko [18].
Also the presence of large structures was studied. So-called spark shadow pic-
tures showed that, for all ratios of densities in the two streams, the mixing
layer is dominated by large coherent structures. This is clearly illustrated in
Figure 1.3. The sequence of similar structures becoming larger further down-
stream, clearly illustrates the growth of the mixing layer. Next to the presence
of large structures, a typical mixing layer phenomenon is the growth rate re-
duction when the convective Mach number increases [18, 78, 103]. As a result,
the growth rate is coupled with only the velocity and density ratios (as long
as the pressure and specific heat ratios equal one).
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Figure 1.3: Spark shadow photograph of a mixing layer from the experiments
performed by Brown and Roshko [96]. The upper flow of nitrogen mixes at 1000
cm/s with the lower flow (same density) of a helium argon mixture that flows at
380 cm/s.

Finally we mention the asymmetric entrainment of the mixing layer. As
a result, the point where the averaged streamwise velocity equals the convec-
tive velocity deflects into the low-speed stream. This is observed in experi-
ments [28, 67] and numerical simulations [78] and was also found in the present
simulations. In this section we have mentioned several aspects that generally
are considered as typical features of the mixing layer. Next we continue with
a description of the numerical simulation of the mixing layer.

1.2 Numerical simulation of the turbulent mixing
layer

The traditional approach to the Navier-Stokes equations was to reduce them
to the so-called Reynolds-averaged Navier-Stokes (RaNS) equations. In this
strategy only averaged quantities which describe the mean flow are solved.
The averaging of nonlinear terms introduces new unknowns in the equations
for which a turbulence model is adopted. Another technique in the simulation
of turbulence is direct numerical simulation (DNS) which became popular
in the eighties. The full, time-dependent Navier-Stokes equations are solved
numerically, essentially without any approximations other than numerical.
It was realized early on that DNS is too expensive to be used in most cases

of industrial interest because of the relatively high Reynolds numbers and
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complex flows. On the other hand, the models used in RaNS are too dependent
on the characteristics of particular flows and hence RaNS cannot be used as a
method of general applicability. Therefore an intermediate approximation was
developed: large-eddy simulation (LES). Here, the large scales of the flow are
computed explicitly, similarly as in DNS, while the effect of the small scales
on the large scales is modeled.
Simple flows, i.e., flows with a relatively low Reynolds number and a rel-

atively simple and small flow domain, can be simulated by a DNS. For more
complicated flows, LES (or RaNS) should be used. The data obtained from
a DNS of a simple flow can be used to validate the LES subgrid (or RaNS)
model. In principle, the most appropriate model can be selected in this way.
The ‘best’ model can subsequently be incorporated into LES (or RaNS) of a
more complicated flow for which DNS is no longer feasible.
Previously, the temporal mixing layer has been investigated with DNS and

the results were used, e.g., for the assessment of the quality of subgrid-models
in LES [104]. The issue of self-similarity in numerical studies of the mixing
layer has mainly been studied in the temporal setting [3, 77, 104, 110]. How-
ever, the temporal simulation is only a crude approximation of physical reality
since periodic conditions are applied in the streamwise direction. Therefore,
we extend this approach to enable spatial simulations by including suitable
inflow and outflow boundaries. This allows direct comparison with results of
physical experiments.
The difference between the temporal and spatial setting is illustrated in

Figure 1.4 where mixing layer results are shown for both frameworks. In
the temporal domain a computational box is considered which is relatively
small in the streamwise direction and has periodic boundary conditions. It
is an approximation of the situation that would arise when moving along
with the centerplane velocity over the spatial mixing layer in downstream
direction. As a result, the thickness of the mixing layer grows in time in
the temporal framework whereas it grows in the streamwise direction in the
spatial framework. In the temporal setting the Mach number M∞ and the
convective Mach numberMc, as introduced in the previous section, are equal.
This is no longer the case for the spatial framework in which Mc usually is
considered as the relevant dimensionless number [14, 68]. It is based on the
velocity difference between the two free-streams of the merging layers, i.e., the
mixing layer as seen from the convective frame.
In this thesis, we focus on DNS and LES of a three-dimensional subsonic

mixing layer. The extensive database from the DNS is also used for RaNS
modeling purposes. We focus on the eddy viscosity and gradient-diffusion
hypotheses. We stress that the comparison with RaNS is done in an a priori
sense. It only involves a post-processing of the DNS data and no actual RaNS
simulation is performed. On the contrary, the LES results are only used for
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Figure 1.4: Contours of spanwise vorticity for a temporal mixing layer at three
subsequent times (upper figures, courtesy of Bert Vreman [104]) and a spatial
mixing layer (lower figure, present results). All plots are at characteristic spanwise
locations with horizontal streamwise domain and vertical normal domain.

a posteriori testing. In this type of comparison, actual LES simulations are
compared with filtered DNS data.
In the present study we thoroughly investigate the minimal set of items

that is necessary to come to a numerical spatial simulation that displays several
properties that are typical for a realistic mixing layer. These, among others,
involve a transition to turbulence by means of vorticity rollers that pair. We
also investigate the presence of self-similarity in the turbulent regime. Fur-
thermore we consider the specific values for the growth rate of the mixing
layer thickness and the peak values for the components of the Reynolds stress
tensor.
Next we give a more detailed description of the present configuration. We

consider subsonic, spatially developing mixing layers that reach a transitional
state which is followed by turbulent flow. For many flows of theoretical in-
terest, the domain is infinite in all directions. For practical reasons, it is
necessary to artificially truncate the domain. The procedure of truncation
should be performed in such a way that the solution inside the domain remains
approximately unchanged. The spatially evolving mixing layer is studied in
a computational domain which has the form of a rectangular box as shown
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Figure 1.5: Specification of the computational domain, consisting of stream-
wise (x1), normal (x2) and spanwise (x3) direction. The streamwise domain is
from xi to xo and the buffer starts at xb.

in Figure 1.5. Periodic boundary conditions are used in the spanwise direc-
tion. Beyond the trailing edge of a splitter plate a mixing layer is formed. The
inflow boundary of the computational domain is situated downstream of this
trailing edge. When the mixing layer is described, globally three typical areas
can be distinguished. The turbulence, that we are mainly interested in, arises
around the centerline. The free-streams of the mixing layer refer to both outer
sides of the normal domain which are characterized by steady flow. The areas
in between these two are called the edges of the mixing layer.
During the simulations, the mixing layer is forced at the inflow boundary

by imposing perturbations that travel downstream and grow. The laminar flow
just behind the inflow boundary is followed by a transitional region containing
typical structures such as lambda-vortices [21, 78]. These interact and develop
further downstream into a turbulent state. At the outflow a buffer domain is
introduced which is typically about 10% of the total domain and has the
purpose of decreasing the perturbations to zero [105]. In order to be able to
compare the spatial mixing layer DNS and LES with the temporal mixing
layer study done in [104] we use the same grid distance and other relevant
parameters.
The simulations suggested here can only be performed for a simple con-

figuration. This implies that not only the computational domain but also the
Reynolds number should be small enough. Another turbulent shear flow set-



1.3. Purpose and outline of this thesis 11

ting that is minimal is the channel study described in ref. [45]. Despite its
simplicity, this setting is useful since several typical flow features are retained.
The study describes results of direct numerical simulations of unsteady chan-
nel flow at low to moderate Reynolds numbers. The objective is to identify
the minimal dimensions of the computational problem required to sustain a
turbulent boundary layer. This simplified situation cannot accurately predict
some of the higher-order turbulence statistical quantities. The computations
represent a basic building block from which a self-sustained turbulent flow can
be constructed. Near the wall, the low-order statistics behaved in much the
same manner as the experimental results. The minimal channel represents
a system that exhibits many of the characteristics of near-wall turbulence in
fully developed turbulent channels and it does so at strongly reduced compu-
tational cost.
Most of the simulations in the present study are performed for simple

configurations. Despite this simple setting, several mixing layer properties
mentioned above are retained. The findings can also be compared with those
from other numerical studies as well as physical experiments. As a result,
the simulations contribute to the numerical simulation of more complex flows.
This is illustrated in the present work as well by means of an LES performed
for a higher Reynolds number and a larger flow domain. Finally we mention
that, although the latter two sections have been devoted to the mixing layer in
particular, some of the issues can be applied to the whole range of turbulent
shear flows.

1.3 Purpose and outline of this thesis

The purpose of the research described in this thesis is first recalled from a
very broad and long-term point of view. Next, the stages towards the present
research are further specified. The goal on the long term can be described as
follows:

1. To be able to predict and understand the behaviour of complex turbulent
shear flows

More specifically, this involves exploring the underlying principles of turbu-
lent shear flows. We mainly consider statistical quantities and properties of
evolving coherent structures. The instantaneous behaviour observed in specific
simulations is important as well, since it allows a detailed comparison between
two different numerical simulations which is relevant for validation purposes.
We also focus on properties which are typical for a certain configuration, like
the mixing layer growth rate.
The method we use is numerical simulation. Because we are interested in

the behaviour of complex turbulent shear flows, we in particular consider the
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LES technique. The mixing layer has favorable properties in this respect. A
subsequent level of research can therefore be formulated as follows:

2. Exploration of the use of LES for the numerical simulation of turbulent
mixing layers

Whether LES can be used depends, e.g., on the available computer power and
the resolution at which LES gives reliable results. Furthermore, we consider
the feasibility of simulations for a computational domain that could replace
the laboratory experiment. The computational setting should be as small
and simple as possible. Moreover, it should not affect typical mixing layer
properties such as the transition to turbulence by means of vorticity rollers
that pair and approximate self-similarity in the turbulent regime. Therefore
the present study starts with a ‘minimal setting’ which only allows a single
structure in spanwise direction. This configuration is used to verify various
aspects of the numerical computation. After this, the domain is extended
in spanwise and in streamwise direction. Finally the Reynolds number is
increased (Chapter 6).
Another way to deal with the feasibility of LES of the mixing layer is to

consider subgrid-modeling for more complex flows. This will also be done in
the present work. The disadvantage of so-called dynamic subgrid-models is
that a dynamic coefficient is employed which needs artificial adaptations for
stability purposes. The coefficient is averaged in the homogeneous direction.
Therefore, these models are less suitable for complex flow configurations. In
an adapted formulation, the coefficient is based on its time-averaged value
instead. Moreover, the CPU time of the LES is reduced compared to standard
dynamic subgrid-models (Chapter 6).
The accuracy of the specific subgrid-models that are employed should be

sufficiently high. This implies that the LES should correctly model the effects
of small scales that are no longer resolved. It can only be verified by compar-
ison with DNS results of the same setting (Chapter 5). This prescribes the
following item:

3. Employing databases from DNS of the turbulent mixing layer to test
subgrid-models

We have to determine which properties are appropriate for comparison. For
example, the mixing layer thickness may not be appropriate while its slope is
very suitable. The comparison may be restricted to statistical quantities and
does not include instantaneous properties.
On its turn, the DNS results should be compared against results of physical

experiments. This favours the use of a spatial setting in the numerical simula-
tions. The extensive database that arises from the DNS may also be used for
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modeling purposes in Reynolds-averaged Navier-Stokes (RaNS; Chapter 4).
Therefore we should carry out the following:

4. A thorough investigation of the DNS results

This implies a sensitivity analysis of the DNS. We report on DNSs performed
at different resolutions and evaluate statistical properties based on several time
intervals. In addition we study the response of the mixing layer to different
inflow conditions, consisting of either perturbations based on Linear Stability
Theory (LST) or a random signal containing a wide variety of frequencies.
Furthermore, we vary the dimensions of the computational domain. These
studies are intended to validate the numerical approach (Chapter 2). Based
on this thorough analysis, the resulting database is used for comparison with
other DNS studies of the mixing layer as well as LES and RaNS (Chapter 3).

Summarizing, the outline of this thesis is as follows. In Chapter 2 the
configuration for the DNS will be given including the steps that accomplish
a DNS containing a laminar region just after inflow followed by stages of
transition and turbulence. The resulting database is extensively described. In
Chapter 3 the presence of self-similarity and the budgets of turbulence kinetic
energy are investigated. Subsequently the results are evaluated from the RaNS
point of view in Chapter 4 where several model assumptions are confronted
with statistical DNS predictions. In Chapter 5 the LES is described and the
results of several models are compared with the DNS results. Finally Chapter 6
is used to discuss results of LESs of complex mixing layers. Conclusions and
recommendations for future research are presented in each chapter separately.





Chapter 2

DNS of a spatially developing
turbulent mixing layer

In Chapter 1 we already mentioned the Navier-Stokes equations that describe
the behaviour of fluid flow. One of the techniques in the simulation of tur-
bulence is direct numerical simulation (DNS). This ‘brute force’ approach at-
tempts to solve all spatial and temporal fluctuations in the fluid. A sufficiently
fine computational grid is required to cover the wide range of scales that are
present in the flow. The development of both RaNS and LES benefits from
accurate data of a turbulent flow as a point of reference. Databases from DNS
are very useful for modeling purposes. Also data is required for the analy-
sis of physical features like self-similarity. The issue of self-similarity requires
the accurate and thorough knowledge of statistical data throughout the whole
computational domain. In the next chapter, the DNS results of the present
work are explored for the presence of self-similarity.
In this chapter the three-dimensional mixing layer is simulated. We recall

from Chapter 1 that throughout the present chapter we restrict to the ‘mini-
mal mixing layer setting’. This configuration is computationally affordable on
the current supercomputers. It therefore allows a thorough investigation of
the sensitivity of the reference DNS regarding resolution, time-averaging in-
tervals, locations of the boundaries and variations in the inflow perturbations.
Subsequently, the resulting database is employed to support some model ap-
proximations in Chapters 3 and 4. It should be emphasized however that the
mixing layer that is simulated numerically cannot be realized in the labora-
tory. Instead, it represents a basic building block from which a self-sustained
turbulent mixing layer arises.
The chapter is organized as follows. In Section 2.1 we introduce the nume-

rical method used to solve the three-dimensional compressible Navier-Stokes
equations. A validation of the DNS in two dimensions using Linear Stability

15
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Theory is presented. Section 2.2 gives a specification of the reference DNS.
Instantaneous results are shown to illustrate the small scales that are present
in the turbulent mixing layer as well as the process of helical pairing. The
time-averaging process and a measure for its convergence is introduced in Sec-
tion 2.3. This is followed by the analysis of the response of several quantities
to changes in the numerical setting. We summarize our findings in Section 2.4.

2.1 Numerical method and validation

In this section we first formulate the 3D compressible Navier-Stokes equations.
Subsequently, we describe the numerical method and present validation results
through comparison with Linear Stability Theory (LST).

2.1.1 Governing equations

The Navier-Stokes equations represent conservation of mass, momentum and
energy and can be written in Cartesian coordinates as

∂tρ+ ∂j(ρuj) = 0, (2.1)
∂t(ρui) + ∂j(ρuiuj) + ∂ip − ∂jσij = 0 (i = 1, 2, 3), (2.2)

∂te+ ∂j((e + p)uj)− ∂j(σijui) + ∂jqj = 0. (2.3)

We use the summation convention which employs summation of a repeated
index over all its values. The symbols ∂t and ∂j denote the partial differential
operators ∂/∂t and ∂/∂xj with respect to time (t) and spatial coordinate (xj)
respectively. Furthermore, ρ denotes the density, uj the j-th component of the
velocity vector, p the pressure and e the total energy density which is given
by:

e =
p

γ − 1 +
1
2
ρuiui, (2.4)

where γ is the adiabatic gas constant. Moreover, σij is the stress tensor which
is a function of the velocity vector u only since we assume constant viscosity:

σij =
1
Re

Sij(u) =
1
Re
(∂jui + ∂iuj − 2

3
δij∂kuk), (2.5)

with Re the Reynolds number, Sij the rate of strain tensor1 and δij the Kro-
necker delta. Furthermore, q is the heat flux vector, given by

qj = − 1
(γ − 1)RePrM2

∞
∂jT, (2.6)

1Note that the strain rate tensor is sometimes defined as S′
ij = ∂jui + ∂iuj . For the

incompressible setting, the difference between Sij and S′
ij vanishes since ∂kuk = 0.
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where Pr is the Prandtl number andM∞ the Mach number of the upper free-
stream. The temperature T is related to the density ρ and the pressure p by
the ideal gas law:

T = γM2
∞
p

ρ
. (2.7)

Throughout we use γ = 1.4 and Pr = 1. The Reynolds number is based
on the upper free-stream velocity, density and viscosity and half the vortic-
ity thickness at the inflow. Both the upper and lower stream dimensionless
temperatures are equal to one.
Among the various approaches in modern turbulence simulations direct

numerical simulation (DNS), Reynolds-averaged Navier-Stokes (RaNS) mo-
deling and large-eddy simulation (LES) are important classes. In DNS, the
full, time-dependent Navier-Stokes equations are solved numerically, essen-
tially without approximations other than of numerical origin. However, DNS
is much too expensive to be used in most cases of practical interest and is
limited to relatively modest Reynolds numbers and quite simple geometries.
In the RaNS approach, only steady solutions or time scales much longer than
those of the small-scale turbulent motion are computed. The effect of the
unsteady turbulent velocity fluctuations is modeled according to a variety of
physical approximations requiring the modeling of the Reynolds stress tensor
to which we turn later. In contrast with the statistical filter used in RaNS, the
data reduction in LES is based on the introduction of a spatial filter. Com-
putational time and memory can significantly be reduced in RaNS and LES.
This allows for simulations in more complex cases than possible with DNS, at
the expense of having to introduce models representing the effects of the small
and rapid phenomena. DNS results at low Reynolds numbers can be used to
support the model approximations.
We consider turbulent flows which are two-dimensional and steady after

statistical averaging. A filter is introduced, that implies averaging over the
homogeneous spanwise direction and over time. In particular, for any flow
property φ we define

φ̄(x1, x2) ≡ lim
T→∞

1
(T − T0)

∫ T

T0

dt

[
1
L3

∫ L3

0
dx3 φ(x1, x2, x3, t)

]
(2.8)

with L3 the spanwise extent (see Figure 1.5). In actual simulations T0 is
taken large enough for transients to have disappeared, whereas its value is not
relevant if the limit in (2.8) is sufficiently well determined. For simplicity of
notation, the so-called Favre-averaging is introduced in compressible flows [31]:

φ̃ ≡ ρφ/ρ̄. (2.9)
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When the bar-filter is applied to the Navier-Stokes equations (2.1)-(2.3),
the nonlinear terms give rise to expressions which cannot be expressed in terms
of the filtered variables ρ̄, ũj and p̄. Therefore, modeling is required in order
to close the system of equations. The most important term is the Reynolds
stress tensor, Rij, with

ρ̄Rij = ρuiuj − ρui ρuj/ρ̄ = ρ̄(ũiuj − ũiũj). (2.10)

In literature, Rij is often expressed as2 ρu′′
i u

′′
j /ρ̄ [64], with u′′

i = ui− ũi the ve-
locity fluctuation in the i-th direction. The components of the Reynolds stress
tensor are referred to as the streamwise, normal and spanwise turbulence inten-
sities, Rii, with i = 1, 2, 3, and the Reynolds stress R12. The components R13
and R23 are negligible in our application. The remaining terms can be deduced
from the former since Rij = Rji.

2.1.2 Numerical method

The three-dimensional compressible Navier-Stokes equations (2.1)-(2.3) can
concisely be written as

∂tU+ ∂jfj = 0, (2.11)

where the state vector U contains the densities of the conserved variables
(ρ, ρui, e) and fj is the total flux in the xj direction. The flux consists of two
parts: a convective part containing first order spatial derivatives of U and
a viscous part containing second order spatial derivatives. Several numerical
schemes for the spatial discretization have been developed and compared for
boundary layer flow [105]. For the convective terms on a uniform grid we use
a fourth-order accurate scheme of the following form [102]:

(∂1f)i,j,k =
1
∆x1

n=2∑
n=−2

wD
n si+n,j,k (2.12)

with si,j,k =
n=2∑
n=−2

wI
n gi,j+n,k and gi,j,k =

n=2∑
n=−2

wI
n fi,j,k+n. (2.13)

Here we introduced weights wD = [1,−8, 0, 8,−1]/12 for differentiation and
wI = [−1, 4, 10, 4,−1]/16 for interpolation. These weights were obtained using

2Note that the Reynolds stress tensor is defined according to the incompressible equiva-
lent, u′

iu
′
j , with u′

i = ui − ūi, and therefore prescribing the division over ρ̄. In some works,
ρ̄Rij is called the Reynolds stress tensor. When comparing the present results directly with
incompressible experiments, we employ the notation u′

iu
′
j for both settings.
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the requirement that polynomials up to degree four are differentiated and in-
terpolated exactly. In this spatial discretization method the derivative in, e.g.,
the x1-direction is pre-averaged over the other coordinate directions in order
to generate a robust scheme which removes specific π-modes. The derivatives
in other coordinate directions follow similarly. This method has been used ex-
tensively and found to be quite efficient [102, 105]. The viscous flux contains
second-order derivatives which are computed in two steps. We first construct
the ‘inner’ derivative ∂in1 f in the cell centers (i + 1

2 , j +
1
2 , k +

1
2) by making

use of vertices in the block [i − 1, i+ 2]× [j − 1, j + 2]× [k − 1, k + 2]. Next,
∂2

1f is computed in vertices (i, j, k) using the derivatives ∂
in
1 f in cell centers

[i − 3
2 , i +

3
2 ] × [j − 3

2 , j +
3
2 ] × [k − 3

2 , k +
3
2 ] with the same method. The

weights for the viscous terms are computed according to the same principle
as the convective weights and yield a method that is fourth order accurate on
uniform grids as is described in more detail in [105].
With the method of lines applied to (2.11), a system of ordinary differential

equations of the form

dU
dt
= F (U), (2.14)

arises with U now denoting the vector of all densities of conserved variables in
all grid-points and F the total discrete flux vector. This system of differential
equations is advanced in time using a second order four-stage compact-storage
Runge-Kutta method. Within one time step ∆t we perform

U(n) = U(0) + αn∆t F (U(n−1)) (n = 1, 2, 3, 4) (2.15)

with U(0) = U(t), U(4) = U(t + ∆t) and α = [14 ,
1
3 ,

1
2 , 1]. The time step ∆t

follows from the so-called CFL condition with a CFL-number that equals 1.8
suggested by other studies [102]; well below the theoretical value of 2.8.
Previously, the above method has successfully been used in boundary layer

flows and in temporal mixing layer flows. In the spatial setting considered
here, the computational domain is limited through the introduction of artifi-
cial boundaries which need to be taken into account separately. Especially the
outflow boundary requires careful attention since no physical boundary con-
dition is available in case of turbulent flow. A buffer domain was introduced
in order to damp reflections that may occur in the vicinity of the numerical
outflow boundary [105]. Two common ways found in literature to achieve this
goal involve either a considerable increase of the viscosity in the buffer or a
gradual change of the governing equations into a parabolic system [58, 91].
When explicit time stepping is used, the reflections should be damped by a
very large increase of the viscosity in order to be effective, which results in a
considerable limitation of the allowable time step. On the other hand, apply-
ing the parabolizing procedure yields only a gradual effect and requires the use
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of quite extended, and hence costly, buffer domains in order to be effective.
Instead, we use a direct relaminarization technique in which the turbulent so-
lution that enters the buffer region is forced towards a steady mean flow near
the end of the buffer. The damping procedure used here is formulated such
that its effect is nearly grid independent and is found to be robust and with
minimal upstream influence. This procedure was combined with characteristic
wave relations [72] which were also used for the two free-stream boundaries.
The solution is forced at the subsonic inflow using a steady mean state vec-

tor (u, T ) onto which unsteady perturbations are added. The remaining fifth
variable is the pressure which is extrapolated from inside the flow domain. The
numerical method used for the computations appears flexible, computation-
ally efficient and robust and can be used in both laminar and turbulent flows
without any flow-dependent adjustments of numerical parameters [23, 105]. A
more detailed description of the numerical method, the boundary conditions
and the buffer domain technique can be found in ref. [105].

2.1.3 Comparison with LST in two dimensions

In this subsection, the numerical method and boundary conditions are vali-
dated by comparing with Linear Stability Theory (LST). To that purpose we
superimpose small perturbations at the inflow on a parallel base flow. The
perturbations were derived from LST and provide a time-dependent forcing of
the flow at the inflow boundary. We use the mixing layer in 2D to illustrate
the development in the linear regime [23, 106]. Only one perturbation eigen-
function is imposed in order to be able to accurately compare the results with
LST.
We start the spatial simulation with a laminar field. For the parallel spatial

mixing layer this consists of a tanh profile for the streamwise velocity, uniform
pressure and the Busemann-Crocco law [73] for the temperature. The Rey-
nolds number is set to 200 and temperature is scaled by a reference tempera-
ture of 276 K. In the normal direction the domain size is 60. The extent of the
domain in the streamwise direction is 6 wavelengths λF of the fundamental
LST mode and a flux forcing term is added to the Navier-Stokes equations in
order to maintain an average parallel flow. This method of validation was also
used in [105] where a more detailed description is given.
We select the most unstable 2D mode from a linear stability analysis and

add this to the base flow at the inflow boundary with amplitude 10−4. We
use a streamwise wavenumber α = αr + iαi = 0.392 − i 0.0532 and circular
frequency ω = 0.296. This results in a phase velocity which is very close to
the mean velocity of the two free-streams. In the simulations we employ two
different grids. The coarser grid has 160 points in streamwise direction and 64
in normal direction, uniformly distributed in both directions. In the finer grid,
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the number of points in normal direction is doubled, resulting in about equal
grid sizes in both directions. Grid refinements in the streamwise direction have
been considered for boundary layer flow and can be found in [105]. There it
was found that about 25 points per fundamental wavelength resulted in a
suitable accuracy for the same numerical method as used here and leads to
the number of 160 mentioned above.
The correspondence between the numerical solution obtained from DNS

and the results of LST can be inferred from the spatial development of the
Kelvin-Helmholtz (KH)-waves, the logarithm of their amplitudes and from the
corresponding growth rates. The latter quantity is the most precise test for
comparison purposes. The Kelvin-Helmholtz waves are plotted in Figure 2.1
for the two resolutions considered here and compared with LST. Results of
the logarithm of the spatially developing amplitude and the growth rate can
be found in [23]. It is clear from Figure 2.1 that the DNS with the higher
resolution compares very well with the results predicted by LST. The coarse-
grid DNS displays a phase difference with the LST result. The DNS result
displays a smooth damping in the buffer. Variations in the size and location
of the buffer were shown not to lead to noticeable changes as was already
observed in [105]. Furthermore, the upstream influence of the buffer domain
appears very small. Finally, we note the damping of the KH-wave towards the
laminar solution in the buffer, consistent with the direct damping procedure
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Figure 2.1: Kelvin-Helmholtz waves as a function of the streamwise coordinate,
x1, for the instantaneous density fluctuation in streamwise direction at time 552.
The coarse-grid (−−) and fine-grid (−·) DNS results as well as the LST prediction
(—) are included.
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used here. Basically, our findings confirm those of the comparison of results of
LST with Tollmien-Schlichting waves in the boundary layer DNS from [105]
at the same resolution. So, for a completely different flow, without adjusting
numerical parameters, an equally accurate and efficient numerical treatment
of the boundaries is obtained. Next, the steps towards a DNS that displays
turbulence are described. The reference DNS results are presented. These
are followed by a sensitivity analysis in which we consider the response to
variations in numerical parameters.

2.2 Reference direct numerical simulation

Many physical experiments involving the mixing layer have been performed in
a wind tunnel containing a streamwise splitter plate that separates the flow.
We assume the flow on both sides of the splitter plate to be laminar boundary
layer flow with different free-stream velocities. At the end of the splitter
plate both streams merge and turbulence will develop, emanating from the
centerplane at x2 = 0, somewhat further downstream. The goal of this section
is to describe the reference DNS. A uniform grid is used in all directions.
Guided by previous results [102, 105], we employ a resolution of 25 points
per perturbation wavelength of the most unstable mode in the streamwise
and 128 points in the normal direction respectively in the reference setting.
Furthermore, we take 32 points in the spanwise direction which covers one
spanwise wavelength. This is combined with the symmetry as described in [80],
which reduces the computer time and storage requirements by a factor of two.
For the mean solution a shooting method is used to solve the boundary

layer equations for steady two-dimensional flow of a compressible perfect gas
with uniform pressure. This is done at an inflow location of xi = 47.5. The
solution is subsequently distributed downstream to different locations x̂1 using
the scaling relation x̂2 = x2

√
x̂1/x1 [90, 105]. More details about the particu-

lar mixing layer setting where the shooting is simultaneously performed from
the centerline to both free-streams can be found in [78]. From the fact that
the mean solution of u1 equals 0.76 at the numerical centerplane (x2 = 0) it
can be deduced that the mixing layer centerplane, defined by ũ1 = 0.75 bends
down slightly towards the low-speed side corresponding to the asymmetric
entrainment reported in experiments [28, 67].
On top of this mean solution we impose inflow perturbations that are fur-

ther specified below. In order to describe some long-time characteristics of the
flow we look for a time scale that represents the behaviour of large structures
of the turbulent mixing layer. We use the period of the fundamental LST
mode, TF , which is independent of numerical parameters like the resolution
and the length of the streamwise computational domain.
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2.2.1 Specification of the Reference Simulation

We consider mixing layer flow with Reynolds number and Mach number as
in Section 2.1.3. With these parameters we are able to reach turbulent flow
in the mixing layer some distance downstream of the splitter plate and we
can make comparisons with results of incompressible experiments since the
effect of compressibility is small. Besides, the parameters correspond to the
ones in [104]. So we can compare a temporal and spatial setting regarding
for example the domain size and grid resolution required for turbulence to be
captured.
The steps towards simulation of turbulence in a mixing layer are described

in the rest of this section and illustrated by contour plots of the spanwise
vorticity. In order to maintain simplicity of the inflow conditions we try to
minimize the number of modes. On the other hand it is clear that we need
several modes in order to realize transition to turbulence in an efficient and
computationally affordable way.
We first select the most unstable 2D mode from a linear stability analysis

as point of departure in the construction of a suitable inflow perturbation. In
order to be able to reach a situation of transition and turbulence a sufficiently
long computational box in the streamwise direction is required. A first indi-
cation of the streamwise length of the box comes from an equivalent temporal
mixing layer study with the same convective Mach number [104]. The instant
at which the solution exhibits turbulence in the temporal setting is translated
in a streamwise location for the current spatial setting using the convective
velocity Uc = (U1+U2)/2 and the velocity difference ∆U in both settings [77].
This relation can be summarized as follows:

t∆U
∣∣∣
temporal

=
x1∆U

Uc

∣∣∣
spatial

. (2.16)

Based on this comparison, we employ a streamwise domain of 16 wavelengths
and a buffer that consists of two wavelengths. We next show the effect of the
LST modes that are imposed at the inflow boundary.
We start with a DNS where the perturbations consist solely of the most

unstable 2D mode at amplitude 0.1. In Figure 2.2.a we have shown isolines of
the spanwise vorticity in a characteristic x3-plane and time t = 552. At regular
distance to each other, vortex rollers are present on the centerline. These re-
gions are characterized by local peaks in the negative spanwise vorticity. The
amount of vorticity decreases in downstream direction. It is clear that each of
the 18 structures corresponds directly to the LST perturbation. In this lam-
inar flow, only negative spanwise vorticity is present. No transition occurred
either when only the most unstable fundamental 2D and 3D modes were used
at the inflow, which shows the importance of the inclusion of subharmonic
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A B

a: low amplitude perturbation: only the fundamental mode

b: low amplitude perturbations: both 2D and 3D modes

c: high amplitude perturbations: more contribution of the 3D modes

d: centerplane equivalent of Fig. c

Figure 2.2: Spanwise vorticities at time 552, plotted for negative (—) and pos-
itive (· · ·) isovalues for ±(0.03, 0.06, . . . , 0.21) in the planes x3 = L3/4 (x2 =
[−16, 16]) (a-c) and x2 = 0 (d) with x1 the horizontal axis. The buffer area is
behind the dotted line.
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modes. The well-known pairing process was observed with the additional in-
clusion of the first two subharmonic modes of the fundamental 2D mode (with
wavelengths two and four times that of the fundamental mode).
For efficient full transition to turbulence additional subharmonic 3D modes

were needed as well. In total, we incorporated three 2D modes (fundamental
and the first two subharmonics) and three pairs of the 3D equivalents, resulting
in the following total perturbation Q at the inflow boundary:

Q(x2, x3, t) = ε
N∑
j=1

Aj

(
Ψrj(x2) cos(γj)−Ψij (x2) sin(γj)

)
. (2.17)

Here, ε and Aj denote the total and j-th relative amplitude and Ψj the complex
eigenfunction (consisting of a r(eal) and i(maginary) part) that is multiplied by
a goniometric function of γj = βjx3−ωjt+φj with β the spanwise wavenumber,
ω the real frequency and φ the phase. The number of modes, N, equals 9 for
this reference case and this appears the minimal number which leads to a
DNS with turbulence within a reasonable distance from the inflow boundary.
The values for all the parameters are collected in Table 2.1. The complex
streamwise wavenumber, α, is included as well to show the resulting streamwise
wavelengths and growth rates predicted by LST. The perturbation period that
is used as time scale for the long-time characteristics, TF , equals 2π/ω = 21.2.
Finally, note that the streamwise perturbation velocity closely corresponds to
the centerline streamwise velocity and approximates the convective velocity,
e.g., for the fundamental mode: ω/αr = 0.755 ≈ Uc = (U1+U2)/2 = 0.75.We
take no phase differences for the 3D modes in view of the symmetry condition
in the spanwise direction. The phases of the 2D subharmonics were chosen
differently from the 2D fundamental mode in order to minimize the distance
between parings [20, 65]. When taking equal relative amplitudes that sum up
to 1 (Aj = 1/9) and a total amplitude (ε) of 0.1, the result from Figure 2.2.b

2D 3D
αr αi φ ω αr αi β ω

F 0.392 -0.0532 0.125 π 0.296 0.391 -0.0310 ± 0.391 0.296
S1 0.196 -0.0405 0.375 π 0.151 0.196 -0.0208 ± 0.391 0.149
S2 0.0980 -0.0235 0.5 π 0.0772 0.0978 -0.0093 ± 0.391 0.0745

Table 2.1: Wavenumbers α = (αr, αi), β phases φ and frequencies ω of the
fundamental mode (F ) and its first two subharmonics (S1, S2) for the 2D and
3D perturbations. Together this results in three 2D modes and three pairs of 3D
modes.
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is obtained where only large scale structures but no turbulent features are
present within the domain.
We observed that both the relative amplitudes of the 3D modes and the

total amplitude of all modes together should be large enough in order to gener-
ate turbulence well within the computational domain while retaining a laminar
and a transitional region. We therefore took the amplitude (ε) equal to 0.2 and
the contribution of the 3D modes (Aj =0.145) was taken approximately three
times larger than that of the 2D modes (Aj =0.0433). These specifications
result in an efficient DNS that contains transitional features, e.g., associated
with helical pairing, and turbulent structures. Other modes, perturbation am-
plitudes or domain lengths may finally result in a turbulent solution as well but
the present selection is particularly effective and computationally affordable.

2.2.2 Results of the Reference Simulation

In the remaining part of this section results of the DNS specified above are
shown. We can distinguish the different stages from laminar through transi-
tional to turbulent flow in Figure 2.2.c. We observe that patches of positive
vorticity appear starting around one third of the streamwise domain. Also we
note that the peak value of the negative spanwise vorticity normalized with
the velocity difference approximately corresponds to that of the temporal mix-
ing layer from [104]. The temporal evolution of the solution is sampled at two
streamwise locations on the numerical centerplane (x2 = 0, x3 = L3/4) in the
laminar and turbulent regime. These locations are denoted by A (x1 = 100)
and B (x1 = 250) in the remaining part of this chapter and indicated in
Figure 2.2.c. These signals will be compared with the corresponding time
evolution at different resolutions and sizes of the computational domain later
on. We have plotted the spanwise vorticity in the centerplane (x2 = 0) in
Figure 2.2.d. The development of so-called Λ-vortices can clearly be seen just
after location A. The presence of these Λ-vortices has also been reported in
other numerical studies of the temporal and spatial compressible mixing layer
using DNS and LES [54, 65, 104]. In Figure 2.3 spanwise vorticity isosurfaces
are shown at t = 552 and restricted to the laminar and transitional parts of the
flow domain. We show the process of a three-dimensional pattern of staggered
Λ-vortices resulting in helical pairing which was observed for the first time in
mixing layer experiments described in [19]. Further downstream this devel-
ops into a turbulent state where many small scales are present. This process
is next illustrated with the energy spectrum at several streamwise locations
which shows that smaller scales enter the system until a state of sustained
turbulence is reached.
The spanwise spectrum for the kinetic energy density at the numerical

centerline x2 = 0 is defined in terms of the Fourier transform of the correlation
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Figure 2.3: Instantaneous spanwise vorticity isosurfaces at value -0.12 from
time=552 for the LST perturbed inflow in the domain [96, 128] × [−5, 5] ×
[−0.5L3, 1.5L3].

function of ui [34, 78]. This results in

E(x1, k3) =
1

(T − T0)

∫ T

T0

ûi(x1, k3, t) û∗
i (x1, k3, t)dt, (2.18)

with û∗
i (x1, k3, t) the complex conjugate of the Fourier coefficient ûi(x1, k3, t).

The instantaneous values of ûi(x1, k3, t) û∗
i (x1, k3, t), with spanwise wavenum-

ber k3, are averaged over time. Normalization factors in the Fourier coefficients
are omitted, T0 = 25 TF and T = 60 TF . In Figure 2.4.a, the centerline kinetic
energy is plotted as a function of x1 for several values of k3. The coefficient for
k3 = 0 represents the mean velocity component which is approximately con-
stant for all values of x1 and therefore not shown. At the inflow boundary, only
one spanwise mode is imposed on top of the average solution. Further down-
stream, more and more modes come up in the system. This is also clear from
Figure 2.4.b where E(x1, k3) is shown as a function of k3 for several streamwise
stations. Comparison of the profiles in Figure 2.4.b clearly shows the collapse
of the Fourier coefficients beyond x1 ≈ 120. This presence of smaller modes
during a long streamwise interval shows that the present DNS is capable of
attaining a state of fully developed turbulence. The second part of the domain
displays a slight linear decrease that is characteristic for all values k3 > 1. In
the buffer, the Fourier coefficients for k3 > 0 decrease to zero again. More
results are shown in the next section where we focus on the sensitivity of the
reference DNS.
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Figure 2.4: Energy spectrum of the reference DNS with LST inflow perturbations.
The kinetic energy density E(x1, k3) is plotted as a function of x1 for modes
k3 = 1(—) to 7(−·) (a) and as a function of k3 for several equidistant streamwise
locations: x1 = 48(—) to 67(···) and (with symbols) x1 = 106(—) to 222(···) (b).

2.3 Sensitivity of the reference DNS

We will describe DNSs in which relevant numerical properties are systemati-
cally varied in order to infer the sensitivity of the reference DNS described in
the previous section. This is done for some averaged variables, for the Reynolds
stress tensor that involves averaged fluctuations, and for some instantaneous
solution components.
This section starts with results of DNSs at two other resolutions which

are compared with those of the reference DNS. We continue with a study
on the length of the time-averaging interval for the different types of quanti-
ties described above. Next, the sensitivity of the solution is considered when
changing the size of the computational domain. Finally, we compare results
of two different inflow perturbations.
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2.3.1 Grid resolution

The DNS described in the previous sections is repeated at both a coarser and
a finer resolution. The specifications are shown in Table 2.2 where Ni denotes
the number of grid points in the i-th direction. The computational domain is
the same for all three resolutions: L1 = 290, L2 = 60, L3 = 16.07. The grid
spacings of the fine resolution are chosen about the same in all three directions,
0.32, 0.31 and 0.25 and correspond to those in the fine resolution of [20].
In Figures 2.5 and 2.6 the instantaneous streamwise and normal momen-

tum density is compared for varying resolutions at the numerical center-
plane (x2 = 0, x3 = L3/4) in the laminar and turbulent regime respectively,
monitoring at location A and B respectively. It is clear from Figure 2.5 that
the solutions arising at the two finer resolutions coincide in the laminar regime
and deviate further downstream in the turbulent regime. The coarse-resolution
signal is included in Figure 2.6 for ρu2 at location A. The main resolution effect
involves an inaccurate prediction of the solution field, especially at location B.
A phase difference is present between the result of the coarsest grid and that of
the two other grids, which was also observed for the LST signal with the same
resolution for the normal direction shown in Figure 2.1. This phase difference
is almost independent of time.
Comparing instantaneous solutions is the most severe test when the sen-

sitivity is considered. We next consider less sensitive properties. In Table 2.3
the mean of the momentum densities and the root mean square (rms) of the
fluctuations are collected at the centerplane locations A and B for all three
resolutions. Since the normal momentum density is an odd function of x3, the
symmetry assumption mentioned before results in ρu3 = 0. The time-average
of ρu1 in A is lower than that in B. This illustrates the slight asymmetric en-
trainment of the mixing layer towards the low-speed side, corresponding with
experimental results already mentioned in this chapter.
At location A the deviation between the middle- and fine-resolution mean

momentum densities is of order 10−4. Further downstream, this value gets
larger. The deviation between the middle- and coarse-grid mean results is
also larger than this value. This is also true for the rms of the fluctuations.

resolution coarse middle fine

N1 300 450 900
N2 64 128 192
N3 16 32 64

Table 2.2: Three resolutions employed to study the sensitivity in grid resolution.
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Figure 2.5: Time evolution of the streamwise momentum density ρu1 at stream-
wise locations A (x1 = 100) and B (x1 = 250) on the numerical center-
plane (x2 = 0, x3 = L3/4) for the middle (−−) and fine (—) resolution.
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Figure 2.6: Time evolution of ρu2 at A (x1 = 100, x2 = 0, x3 = L3/4) for the
coarse (−·), middle (−−) and fine (—) resolution.

ρu1 ρu2 ρu3
mean rms E-2 mean E-3 rms E-2 rms E-2

A B A B A B A B A B

coarse 0.7485 0.767 6.116 7.32 0.5 9.7 5.3 8.7 6.6 7.0
middle 0.7713 0.782 6.471 6.97 -5.9 1.8 6.1 8.2 7.8 7.6
fine 0.7714 0.790 6.473 6.68 -6.2 1.1 6.0 8.3 7.7 7.8

Table 2.3: Mean values and rms of the fluctuations of the three momen-
tum densities at the laminar (A) and turbulent (B) streamwise centerline lo-
cations (x2 = 0, x3 = L3/4) based on the time interval [25 TF , 150 TF ] and
compared at three resolutions.
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The rms value is related with the turbulence intensities which we consider
next. We compare results of the streamwise turbulence intensity, R11, in Fig-
ure 2.7.a. Here, the maximum deviation between the middle and fine resolution
equals 5% for x1 = 270 and is a factor two smaller than the maximum devi-
ation between the coarse and fine resolution. Time-averaging was performed
from 25 TF until 150 TF , and results based on different averaging intervals are
compared in the next subsection. The profiles of all components of the Rey-
nolds stress tensor will be discussed and compared with physical experiments
in Section 3.1. Finally, we consider the momentum thickness which is defined
as [74, 77]:

θ(x1) =
∫ L2/2

−L2/2
ρ̄(x1, x2)

(
U1 − ũ1(x1, x2)

)(
ũ1(x1, x2)− U2

)
(U1 − U2)2

dx2. (2.19)

The momentum thicknesses arising from the DNS at the different resolutions
are shown in Figure 2.7.b. The maximum deviation between the middle- and
fine-resolution momentum thickness is 1% which is a factor of two smaller than
the maximum deviation between the fine and coarse result.
Summarizing, the coarse DNS gives a fairly reliable impression of the mo-

mentum thickness and the resulting growth rate. The middle resolution gives
a reliable impression of, e.g., the mean velocities as well as the components of
the Reynolds stress tensor. It is clear that at least the fine resolution is needed
to describe the instantaneous quantities accurately. These findings regarding
the resolution correspond to those found in [104].
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Figure 2.7: Profiles of R11 as a function of x2 at x1 = 270 (a) and momentum
thickness θ as a function of x1 (b) for the coarse (−·), middle (−−) and fine (—)
resolution.
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2.3.2 Time-Averaging process

We introduce the time-averaging process in more detail and define a mea-
sure for monitoring convergence of the time-average. Suppose averaging has
been performed from time T0 to time T. This results in a partially averaged
flow variable that depends on both the sampling time interval and the spatial
coordinates:

φ
T (x1, x2) ≡ 1

(T − T0)

∫ T

T0

dt

[
1
L3

∫ L3

0
φ(x1, x2, x3, t) dx3

]
. (2.20)

It is the finite time equivalent of φ̄ defined in (2.8). Here, we compute φ̄T

using the trapezoidal rule for the integration over both the spanwise direction
and the time.
In analysing statistical results of a spatially developing flow we should

average long enough in time to guarantee a proper estimate of the average
solution and its physical properties. To quantify this convergence we introduce
the ‘residue’

ε(T ) =
1
∆

[∫ L2
0 dx2

∫ xe

xs
dx1

(
φ̄T+∆(x1, x2)− φ̄T (x1, x2)

)2

∫ L2
0 dx2

∫ xe

xs
dx1

(
φ̄(x1, x2)

)2

]1/2

, (2.21)

where ∆ denotes the sampling time step, [xs, xe] the ‘physical’ part of the
streamwise computational domain and L2 the width of the flow domain in
normal direction. In practice, φ̄ is approximated by the results of the largest
sampling interval available. The residue ε(T ) should decrease to zero for large
values of T. It is normalized by a measure of the averaged variable itself to
facilitate comparison with the convergence of other variables. Of course the
average φ̄T depends formally on T0 as well. However, if T � T0 and T0 is taken
sufficiently large for initial transients to have disappeared, the dependence on
T0 can safely be neglected. Throughout this chapter, the averaging process has
always started at time T0 = 25 TF , at which time the flow is fully developed.
The results presented do not change significantly when the averaging is started
at a later moment in time.
In Figure 2.8.a the time-averaging process for the fine resolution is illus-

trated for R33. The averaging is performed from T0 until times T1 = 70 TF ,
T2 = 110 TF and T3 = 150 TF . The maximum deviation in results of the longer
time intervals until T2 and T3 equals 2 × 10−4 (6%) for, e.g., x1 = 240 and
is a factor of four smaller than the equivalent for the time intervals until T2
and T1. Furthermore, the time-averaging process of the momentum thickness
is shown in Figure 2.8.b. The three lines almost coincide. The rms in the
deviation between the results of the shorter time intervals until T1 and T2 is
within 1% and drops with a factor two for T2 and T3.
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Figure 2.8: Sensitivity of the time-averaging interval for the fine-grid R33 as a
function of x2 at values x1 = 145 and x1 = 240 (a) and momentum thickness
θ as a function of x1 (b). For T we employ the (increasing) values T1 (—), T2
(−−) and T3(−·).
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Figure 2.9: ε(T ) for convergence of R12 (a) and of θ(x1) (b) with [xs, xe] =
[120, 265] for the coarse (—), middle (−−) and fine (−·) resolution.

The residue ε(T ) as defined in (2.21) is illustrated in Figures 2.9.a and
2.9.b for R12 and θ respectively for all three resolutions. Both figures show a
decrease which is insensitive with respect to the exact choice of the streamwise
interval [xs, xe] within the total streamwise physical domain [xi, xb]. It is close
for the two finer resolutions where during the last 1000 time units ε is smallest
for the fine resolution. Finally, we observe that ε(T ) is smaller for θ than for
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R12. This shows that the Reynolds stress tensor is a more sensitive quantity.
Although the DNS should be continued much longer to reach a collapse of
the Reynolds stress tensor profiles, it appears we have averaged long enough
in time to study self-similarity of the DNS results. This will be considered
in the next chapter. Before that, we continue this study of the sensitivity
of the middle-resolution reference DNS. This is first done with respect to
modifications in the locations of the boundaries of the computational domain
and finally with respect to variations in the inflow perturbations.

2.3.3 Boundary location

We consider three variations on the reference DNS regarding the computa-
tional domain consisting of a physical part followed by a numerical buffer.
This involves extending the streamwise physical domain, buffer and domain
height and is summarized in Table 2.4. The resulting instantaneous streamwise
momentum densities at location B in the turbulent regime (see Figure 2.2.c)
are shown in Figure 2.10. The signal from the reference DNS is included as
well. The final time of the figure corresponds to two traversal times (defined
as L1/Uc) of the case V2 (t = 945). So, reflected perturbations returning from
the outflow boundary should be visible if present. All four signals in the figure
behave approximately the same. For the time interval 0-890 the maximum
deviation of the instantaneous streamwise momentum density ρu1 compared
to the reference DNS at the turbulent location equals 4%, 13% and 5% for
respectively the cases V1, V2 and V3.

For a more quantitative comparison, some values for the mean and rms
of the fluctuations are collected in Table 2.5. The deviation is largest again
for V2 being 0.003 (0.4%) in the mean value and 0.001 (1.5%) in the rms.
This implies that related properties like the Reynolds stress tensor, and in
particular the momentum thickness that only depends on ũ1, will not change
much as well. So we can conclude that the reference DNS is quite insensitive

buffer length (λF ) domain length (λF ) domain height

Ref. 2 16 60
V1 4 16 60
V2 2 20 60
V3 2 16 90

Table 2.4: Configurations of the three variations on the reference DNS with λF
the fundamental wavelength from LST.
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Figure 2.10: Temporal development of ρu1 at B for the reference DNS(—) and
domain extensions V2(−−), V3(−·) and V1(· · ·).

ρu1 Ref. V1 V2 V3

mean 0.783 0.783 0.786 0.784
rms 0.0664 0.0666 0.0673 0.0661

Table 2.5: Mean values and rms of the fluctuation of the streamwise momentum
densities at location B based on the time interval 0-890 for several configurations
of the computational domain.

with respect to variations in the buffer length and the sizes of the domain. In
the next subsection we consider the sensitivity of the reference DNS when an
other inflow perturbation is used.

2.3.4 Inflow perturbations

The inflow is used to force perturbations onto the mixing layer. Several studies
stress that the details of initial conditions persist very far downstream [27,
87]. Different inflow perturbations may therefore imply different transitional
behaviour. As a result, the sensitivity of the results arising from different
inflow perturbations can only be considered for the turbulent regime. Besides,
only properties that are supposed not to change in streamwise direction can
be compared, like the growth rate of a mixing layer thickness and the peak
values of the Reynolds stress tensor. The experimental observations display
discrepancies in characteristic features like the growth rate [87]. The study of
inflow boundary sensitivity also allows to consider the existence of multiple
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similarity states.
An overview of some alternatives of perturbations used to generate tur-

bulence in other settings and shear flows is given in [25]. The reference DNS
described in Section 2.2.2 was performed using inflow perturbations from LST.
The subject of this section is to compare this case with the results of a DNS
using a randomly perturbed inflow. This is done in a domain with equal grid
spacing and domain sizes as in the reference DNS, except for the extension of
the streamwise domain imposed by the larger transition region. The evolution
of the momentum thickness and the resulting growth rate in the streamwise
direction for both simulations are compared with results of physical experi-
ments.
We consider the case where the perturbations at the inflow are random

variables multiplied by a Gaussian function in the normal coordinate to locate
the perturbations near the centerline. Three-dimensionality is introduced by
including a sinusoidal perturbation in the spanwise direction. The perturba-
tions Q imposed at the inflow have the following form:

Q(x2, x3, t) = ε exp(−x2
2)

(
A2DΨ2D R2D(t) +A3D Ψ3D g(β x3)R3D(t)

)
with β the spanwise wavenumber from before in order to conserve the spanwise
domain extent and respect the periodicity in the boundary condition. For g we
employ a sine for the u3 perturbation and a cosine for the remaining variables.
Furthermore, R2D and R3D are random functions according to the following
stochastic differential equation:

dR

dt
(t) = −R(t)

τ
+ χ(t). (2.22)

The time derivative equals a relaxation term and a random part [34]. The
relaxation time, τ, is taken equal to 1.2 which is about ten times the time
step in the middle resolution. Furthermore, χ(t) is a random function with
a Gaussian distribution with zero mean and unit standard deviation which
is computed at each Runge-Kutta stage. However, the exact relaxation time
and frequency of updating the random function have no direct influence on
the global behaviour of the results further downstream. For all R2D and
R3D components of the perturbations, the random function is computed in-
dependently. These perturbations are added to the (laminar) solution of the
boundary layer equations. The value of the amplitude ε is taken equal to 0.2.
The relative amplitudes equal A2D = 0.0433 and A3D = 0.290. The relative
and total amplitudes of both 2D and 3D modes correspond to those of the
reference configuration described in Section 2.2.1 when we take into account
that R(t) from (2.22) approximately fluctuates between -3 and 3. Finally, the
values of Ψ2D and Ψ3D depend on the component and are based on the average
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Figure 2.11: Instantaneous spanwise vorticity isosurfaces at value -0.12 from
time=552 for the randomly perturbed inflow in the domain [111, 151]× [−1, 6]×
[−0.5L3, 1.5L3].

of the peak values of the corresponding LST eigenfunctions. The differential
equations are solved simultaneously during the simulation with the four-stage
Runge-Kutta method.
When taking the same streamwise extent of the domain as used with the

perturbations from LST, the flow no longer becomes turbulent downstream.
Extending the streamwise domain with some 25% resulted in a simulation in
which the solution downstream compares well with the results arising from
the LST case. In Figure 2.11 the spanwise vorticity for this case is shown
at the same time as in Figure 2.3. It is considered for larger values of x1,
however, since the flow remains near the laminar state over a longer streamwise
extent and transition arises further downstream compared to the LST case.
In fact, translating the LST perturbed simulation downstream over this extra
laminar zone of about 70 units, roughly results in the same flow features. The
three-dimensional pattern of staggered Λ-vortices resulting in helical pairing
is present in this simulation as well. Further downstream this develops into a
turbulent state where many small scales are present.
The spectrum of the randomly perturbed DNS is shown in Figure 2.12.

One of the main differences with the LST perturbed DNS is that the contri-
bution of the modes in Figure 2.4.a is a factor ten higher for the first quarter of
the domain. Further downstream, the levels of the Fourier coefficients saturate
at about equal values for both simulations. As a result, the level of turbu-
lence that is reached in both simulations is approximately the same. From
Figure 2.12.b it is clear that at the inflow only the mode with index k3 = 1 is
present. The behaviour for the larger wavenumbers, similarly as in the LST



38 2. DNS of a spatially developing turbulent mixing layer

50 100 150 200 250 300 350 400

10

(a)

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

x
1

10
0

10
1

10

(b)

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k
3

x1=48 
x1=54 
x1=61 
x1=67 
      
x1=156
x1=195
x1=234
x1=272

Figure 2.12: Energy spectrum of the DNS with random inflow perturbations. The
kinetic energy density E(x1, k3) is shown as a function of x1 for modes k3 = 1(—)
to 7(−·) (a) and as a function of k3 for several equidistant streamwise locations:
x1 = 48(—) to 67(· · ·) and (with symbols) x1 = 156(—) to 272(· · ·) (b).

equivalent, does not reach the well-known slope of −5/3, probably because the
Reynolds number is too low. Besides, in several temporal mixing layer studies
it is reported that this −5/3 behaviour is hard to reach in the spanwise di-
rection [21, 77]. Finally, we conclude that a collapse of the mode coefficients
occurs beyond about x1 = 180. In the rest of this section we show the impact
of the change in inflow perturbations on a statistical variable.
In Figure 2.13 the momentum thickness, averaged over 125 TF and the

spanwise direction, is plotted as a function of the streamwise coordinate for
both inflow perturbations. The computed thicknesses can be compared with
the thickness of the laminar field which is proportional to the square root of
the streamwise coordinate. Both DNS momentum thicknesses in Figure 2.13
appear in good approximation to be linear functions of the streamwise coor-
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Figure 2.13: Momentum thickness θ as a function of x1 for the DNS with random
(—) and LST (−−) inflow perturbations. Also the development of the steady
laminar mixing layer (−·) and the experiment of Oster e.a. [67] is included (o).

dinate in a large part of the domain. Therefore this variable is suitable in
the study of self-similarity of the flow in the turbulent regime where it can be
used for the scaling of the normal coordinate when studying, e.g., the Reynolds
stress tensor. For the random inflow DNS, some extra streamwise distance is
required to reach transition and allow the most unstable modes to arise from
the random noise imposed at the inflow. The shorter streamwise distance,
required for the LST inflow DNS results to exhibit linear growth, supports
the spectrum findings that in the first part of the domain the signal contains
more modes than for the random inflow DNS. Finally we remark that for both
simulations the collapse of the mode coefficients from the spanwise Fourier
spectrum globally corresponds to the streamwise location beyond which the
momentum thickness develops linearly. This is the case from x1 = 120 for the
LST perturbed inflow and from x1 = 180 for the randomly perturbed inflow.
For the approximation of the growth rate α = dθ/dx1 we use the method

of least squares fit in the appropriate part of the domain. Other alternatives
are available and give rise to the same conclusions. The estimation of α de-
pends slightly on the location and length of the streamwise domain used for
its determination. The growth rates arising from the momentum thicknesses
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of the two different inflow perturbations both equal 0.014. At this level of
accuracy for α, the precise selection of the region from which this slope is
computed is somewhat sensitive especially for the LST perturbed inflow [24].
The behaviour of the momentum thickness of the randomly perturbed inflow
approaches linearity better. A measure for this deviation from linearity is the
rms value between the momentum thickness and the linear slope. The value
for the LST inflow DNS is a factor two larger than the random inflow DNS.
Finally, we compare the growth rate with physical experiments. From [29],

for incompressible shear layers with equal free-stream densities, the momen-
tum thickness growth rate was found to be in a range that for the present
free-stream velocity ratio amounts to [0.009, 0.017]. A factor four was used
to convert vorticity thickness in momentum thickness as suggested in [77].
The value for the growth rate computed here can be compared with incom-
pressible results and falls well in this range. This is illustrated in Figure 2.13
where we included results of an incompressible mixing layer experiment which
is one of the few experimental studies that show the momentum thickness
evolution [67]. The length scale is adjusted in order to fit this result in the
dimensions of the present computational domain. We emphasize, however,
that this adaptation does not affect the growth rate.

2.4 Conclusions

In this chapter we have presented DNSs for a spatially developing three-
dimensional mixing layer. The sensitivity of the DNS is considered with re-
spect to grid resolution, length of time-averaging, boundary locations of the
computational domain and inflow perturbations. The DNS results of three
different resolutions displayed that the coarse DNS already gives a reliable
impression of the momentum thickness and the resulting growth rate. The
middle resolution gives a reliable impression of, e.g., the components of the
Reynolds stress tensor and is therefore suitable to study self-similarity of the
mixing layer. At least the fine resolution is needed to describe the instanta-
neous quantities accurately.
Subsequently we focused on the time-averaging intervals and concluded

that already early in the DNS the momentum thickness was predicted properly
but the total time of the current DNS was needed for an accurate determina-
tion of the Reynolds stress tensor. Also the results turned out to be insensitive
enough with respect to variations in the buffer length and the size of the do-
main. Finally, a similar growth rate was found for the LST and randomly
perturbed DNS. So in further studies this may contribute to the discussion
of the existence of a single self-similarity state. Summarizing, in this chapter
we have presented a robust DNS that generated a database. This database
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can next be used for, e.g., the validation of model assumptions in numerical
techniques other than DNS. First, similarity features are considered in the
next chapter. These involve the self-similar development of several quantities
and the classification of the terms in the turbulence kinetic energy equation.





Chapter 3

Analysis of statistical results

In this chapter we complement the experimental investigations of the turbu-
lent mixing layer with an analysis of the statistical DNS data as described
in the previous chapter. A numerical study has the advantage of allowing a
precise control of inflow conditions with which, e.g., the strong persistence
can be examined. The results described in Chapter 2 are explored regarding
the presence of self-similarity as well as the collection of energy budgets as
they arise in the turbulence kinetic energy equation. The first motivation is a
further validation of the DNS. The database of a turbulent shear flow simu-
lation is supposed to display self-similarity. Moreover, the total of the energy
budgets should be conserved. A second motivation involves both properties
as such. A quantity is considered to be self-similar when it can be described
by only one profile. Self-similarity therefore implies a considerable collapse of
the data. Furthermore, the energy budgets can be used to test some RaNS
assumptions as will be done in the next chapter.
Turbulent mixing layers are known to develop into a self-similar state suf-

ficiently far downstream of the splitter plate that is used to generate them.
There have been several experimental investigations of the statistics of self-
similar turbulent mixing layers [9, 41, 108]. A large variation in the experi-
mental results is observed even for the most basic statistical quantities, like
the normalized growth rate and the turbulence intensities. In ref. [87] an his-
torical overview of the growth rate determination for physical experiments is
given. In much of these studies, it was found that far downstream the growth
rate and profiles of the Reynolds stress tensor change in response to variations
in the inflow conditions. In ref. [27] it is suggested that the reason for these,
and other discrepancies in experimental observations, may be that details of
upstream conditions are very persistent in turbulent mixing layers.
Neither physical experiments nor numerical computations have been able

to definitively settle the issue about the existence of multiple similarity states.

43
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Regarding the fact that details of the initial conditions have been observed
to persist very far downstream, it is suggested in ref. [77] that the same self-
similar state could be achieved if simulations were allowed to evolve for longer
times (temporal setting) or larger boxes (spatial setting). Mixing layers are
not unique in exhibiting such persistent strong dependence on inflow condi-
tions. Other numerical studies involve the similarity of time-evolving plane
wakes [40, 66], where a similar ongoing discussion regarding the existence of
multiple similarity states takes place. The effect of initial conditions on the
development of temporally evolving planar three-dimensional incompressible
wakes is studied in ref. [88]. A related numerical investigation on the effect of
the inflow conditions on the self-similar region of a round jet is presented in
ref. [13].
The extensive database that arises from the DNS can also be used for

RaNS modeling purposes. In the second part of this chapter, all terms of
the turbulence kinetic energy equation are calculated in order to see which
terms are important. Also some terms satisfy the constraints of self-similarity.
Furthermore, we consider which terms vanish after integration in the normal
direction. In the next chapter this analysis is extended to the eddy viscosity
and gradient-diffusion hypotheses. Finally we note that, if not mentioned
otherwise, all results presented in this chapter are based on the longest time
sample (from T0 = 25 TF until T = 150 TF , with T0 and TF defined in
Section 2.2.1).
The chapter is organized as follows. In Section 3.1 we consider several

quantities like the growth rate, mean streamwise velocity and components of
the Reynolds stress tensor that may show features of self-similarity. These
are also compared with results of other numerical studies and physical exper-
iments. Section 3.2 is used for the presentation and discussion of the budgets
from the turbulence kinetic energy equation. We summarize our findings in
Section 3.3.

3.1 Self-similarity

In this section we describe the self-similar development of the mixing layer
in more detail. The similarity profile of several quantities is studied. Results
of physical experiments regarding the growth rate, averaged streamwise mo-
mentum density and width and peak of profiles of the Reynolds stress tensor
components are compared with the present findings.
We already mentioned that developed turbulent mixing layers evolve self-

similarly, with a linearly increasing thickness as a function of the streamwise
coordinate. By scaling with the local thickness and the difference in the free-
stream velocities, the profiles of several quantities at different downstream
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locations (or at different times in the temporally evolving flow) approximately
collapse onto a single curve. In what follows, the results of the present DNS
are explored for evidence of such self-similar evolution. We need a similarity
variable that is a measure for the layer thickness. This variable is subsequently
used for the scaling of the profiles of various quantities, e.g., the time-averaged
velocity or components of the Reynolds stress tensor. As reported in [77] a
suitable similarity variable is the momentum thickness.
A variable φ is said to be self-similar beyond a streamwise location x̂1 if

it depends only on a combination of the independent variables rather than
on each independent variable individually. Because of the bending down of
the mixing layer, that was already mentioned in Chapter 1, usually an extra
translation variable is employed. Self-similarity in a set of profiles can be
written as:

φ(x1, x2) = f(η(x1, x2)) x1 > x̂1, (3.1)

with

η(x1, x2) = (x2 − xc2)/θ(x1).

Here, θ is the momentum thickness, η is a similarity variable and xc2 is chosen
such that the mean streamwise velocity equals Uc at η = 0 [41, 60, 67].
In [61] the most important characteristics for self-similarity in fully-deve-

loped flow were collected for the streamwise development of mixing layers. A
first property is a linear growth of a characteristic thickness with respect to
downstream distance. Furthermore, self-similarity of the mean velocity profiles
is needed. Finally, all turbulence intensity profiles should also satisfy this
similarity constraint. The latter requirement, among others, implies that the
peak values should remain constant. Note that a linear growth of the mixing
layer is only one of the conditions for the achievement of self-similarity. In most
configurations, the profiles of the turbulence intensities are more sensitive in
determining self-similarity. Following [95], the velocity difference across the
layer is chosen as the normalizing velocity and this is used for, e.g., the scaling
of the Reynolds stress tensor. In the rest of this section, the present mixing
layer is considered for the presence of self-similar behaviour.
The linear growth of the momentum thickness as shown in Figure 2.7.b

arises beyond x̂1 ≈ 120. In Figure 3.1.a we compare the averaged stream-
wise velocity at several downstream locations. So, ũ1(x1, x2) is plotted as
a function of η = (x2 − xc2)/θ(x1) for various values of x1. Except for the
first streamwise location, the maximum deviation in the figure is 1%. The av-
erage of these profiles in the self-similar region is also compared with other
experimental [41, 67] and numerical studies [77]. The study in [77] deals with
the temporal incompressible mixing layer. The physical experiment from [41]
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Figure 3.1: Similarity profiles of (ũ1−U2)/∆ U from several streamwise locations
as a function of η = (x2 − xc2)/θ(x1) in the present DNS (a) and compared with
other studies [77, 41, 67] (b).

is done at the same convective Mach number as in the present case. More-
over, we include the results of an incompressible experiment [67] which is one
of the few experimental studies where the results are presented in terms of
the momentum thickness. So, it can be compared directly with the results
from [77] and the present study. From Figure 3.1.b it is clear that the present
streamwise momentum density profile corresponds to results of other studies
regarding the slope around the center of the mixing layer. Similarly as for the
momentum thickness in Figure 2.13, the deviation with the experiment from
Oster et al. [67] is small (at most 1%).
However, the collapse of the scaled mean profiles is not a sensitive indicator

of self-similarity [41, 61]. Therefore we consider the streamwise development of
the streamwise and normal turbulence intensity profiles as shown in Figure 3.2.
It is clear that the width of the profile increases with downstream distance.
Two isolines are included as well to illustrate self-similar behaviour far down-
stream resulting in linear dependence on the streamwise coordinate. In order
to compare the width and peaks of the stress components R11 with the normal
coordinate normalized by the momentum thickness is displayed in Figure 3.3.
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Figure 3.2: Streamwise development of the turbulence intensities R11 (a) and
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the level of zero (· · ·).
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The scaled width of the profiles is approximately the same at all streamwise
locations. Except for the first streamwise location, the maximum deviation in
the figure is 3%. Summarizing, the momentum thickness θ displayed a linear
growth beyond x̂1 ≈ 120. This value approximately equals 224 for the averaged
streamwise velocity ũ1 and 240 for the streamwise turbulence intensity R11.

Similarly as for the sensitivity studies regarding resolution and averaging
time in the previous chapter, the most sensitive part of the profile becoming
self-similar is the value of the peak. The streamwise development of the peak
values of the Reynolds stress tensor is collected in Figure 3.4. Here, results are
shown of the middle-resolution DNS (see Table 2.2) with LST perturbations
as well as with random perturbations at inflow. The fine-resolution DNS data
are close to the middle-grid results as illustrated in Figure 2.7 for R11. As
is clear from the streamwise evolution of the peak value in all components
of the Reynolds stress tensor for the LST perturbed DNS, the peak value in
the region after the inflow is higher than the asymptotic level attained as x1
becomes large. This is reported also in other studies of temporal DNS [3]
and experiments [9] of the mixing layer. The peak value of the Reynolds
stress, u′

1u
′
2, from the random inflow DNS approaches a constant level only far

downstream.
The peak values for the fine-grid DNS with LST inflow perturbations and

results of other studies are summarized in Table 3.1. Also some incompressible
results that contain the spanwise turbulence intensity are collected [9, 44]. We
focus on the experimental results that are initiated with a laminar boundary
layer and ignore those generated from a turbulent boundary layer. We recall
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Figure 3.4: Streamwise development of the peak in velocity fluctuations for
all components of the Reynolds stress tensor: R11(—), R22(−−), R33(−·) and
−R12(· · ·) for the DNS results of LST (o) and random (x) perturbations at the
inflow boundary.
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αn u′
1/∆U u′

2/∆U u′
3/∆U u′

1u
′
2/∆U2

DNS (Mc = 0.2) 0.021 0.19 0.15 0.12 -0.012
Rogers e.a. (incompr.) 0.014 0.16 0.13 0.15 -0.010
Bell e.a. (incompr.) 0.022 0.18 0.13 0.15 -0.012
Goebel e.a.(Mc = 0.2) 0.019 0.22 0.15 -0.017
Huang e.a. (incompr.) 0.028 0.19 0.16 -0.011
Oster e.a. (incompr.) 0.020 0.19

Table 3.1: Normalized momentum thickness growth rates and peak values of
components of the Reynolds stress tensor for the present DNS, the temporal DNS
of [77] and experimental studies [9, 41, 44, 67].

that u′
i refers to

√
Rii = (u′

iu
′
i)

1/2 for the incompressible and to (ρu′′
i u

′′
i /ρ̄)

1/2

for the compressible setting. Furthermore the normalized growth rate is in-
troduced which can be used for direct comparison of spatial configurations. It
is denoted by αn and defined as:

αn = dθ/dx1 · Uc/∆U

= dθ/dx1 · (1 + r)/(2(1 − r)),

where r equals the ratio of free-stream velocities:

r = U2/U1.

The equivalent growth rate for the temporal setting follows from relation (2.16)
and equals (1/∆U) dθ/dt. The normalized growth rate equals 0.021 for the
present simulation and is in the range of findings from several studies, sum-
marized in [77] as [0.014, 0.025].1

From the table we observe that the peak value in the streamwise turbulence
intensity R11 = u′

1u
′
1, normal turbulence intensity R22 = u′

2u
′
2 and shear

stress R12 = u′
1u

′
2 of the present DNS is in the range of peak values reported

in other studies. The spanwise turbulence intensity R33 = u′
3u

′
3 turns out

to be too low compared to other studies. This may be due to the fact that
the spanwise domain covers only one fundamental wavelength. In a numerical
study of an incompressible spatially-growing mixing layer [21], it is found
that a wider spanwise domain results in a lower peak for u′

2u
′
2 and a higher

1Note the adaptation: [0.014, 0.025] instead of [0.014, 0.022] from [77]. This interval is
based on the collection of experimental growth rate values in [29] with respect to dδ/dx1(1+
r)/(1 − r) : [0.25, 0.45]. This thickness is rewritten to the vorticity thickness with a factor 2
as suggested in [29] and next to the momentum thickness growth rate with a factor 4.44 as
suggested in [77]. Finally an extra factor 2 is needed in the definition of αn. This results in
an interval of [0.014, 0.025] for αn.
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peak for u′
3u

′
3 which supports this conjecture. The large-domain calculations

from [55] display higher fluctuation levels than the present small-box ones.
An empirical relation that couples the maximum shear stress and the self-

similar growth rate can be written as [6, 60, 95]:

−u′
1u

′
2max/∆U2 = 0.626αn. (3.2)

For the present results, the left-hand side equals 0.012 and is close to the
right-hand side value of 0.013. So, although the mixing layer may not have
been fully developed in terms of R12, its value in Table 3.1 already satisfies
this relation. Furthermore, we remark from Figure 2.13 that the momentum
thickness generated with the LST inflow displays a slight increase of the growth
rate around x1 = 150. This corresponds to a maximum level of the R12 peak
in Figure 3.4. On the other hand, the streamwise development of the R12 peak
is more constant for the random inflow DNS. This supports the fact that the
corresponding momentum thickness growth is closer to linearity.
In Figure 3.5 the profiles of all components of the Reynolds stress tensor

are collected and compared with the studies displayed in Table 3.1. The
normalized profiles are averaged in the self-similar region in order to reach
the best estimation. For the present DNS in Figure 3.5.a the profile of the
streamwise turbulence intensity around the peak is close to the experimental
result from [67]. For the peak values in Table 3.1 we concluded that differences
in the peak values compared to experiments may be due to the extent of the
spanwise domain. So, similarly as for the growth rate, the ‘minimal mixing
layer’ configuration may be a restrictive factor in the simulations. Note that
the turbulence intensities at the upper and lower boundaries do not equal
zero for all components. Since the profiles decrease in a smooth sense, this
is assumed to be a numerical effect that vanishes when the height of the
computational domain is enlarged. This conjecture is based on the findings
from Section 2.3.3.

3.2 Analysis of energy budgets

In this section we focus on the turbulence kinetic energy equation. This equa-
tion describes the transfer of energy which mainly flows from large to small
scales. The turbulence kinetic energy can be used to specify the eddy viscosity
and thus model the Reynolds stress tensor. We start with the turbulence ki-
netic energy equation. Each of the terms in this equation is next evaluated in
order to identify the importance of all terms separately. Finally we show the
sensitivity of the results due to changes in the grid resolution and the length
of the time-averaging. Similarly as mentioned in Section 3.1, all results are
normalized by ∆U and θ(x1) which corresponds to the incompressible setting
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Figure 3.5: Components of the normalized turbulence intensities R
1/2
ii /∆U

(i=1-3;a-c) and Reynolds stress R12/∆U2 (d) as a function of the normal co-
ordinate normalized with the momentum thickness and centered around the peak
value, η = (x2 − xc2)/θ(x1).

of ref. [77]. An extra normalization ρ∗ for the density is needed in the com-
pressible situation. For ρ∗ we take the upper free-stream density, which is
similar to the scaling of the temporal mixing layer study in [104].
The present results are compared with a temporal mixing layer study at

the same convective Mach number [104]. We also consider the incompress-
ible temporal mixing layer DNS study described in [77]. Other studies of the
turbulence kinetic energy budgets of the incompressible mixing layer are the
experiments described in [108]. Numerical studies for incompressible applica-
tions other than the incompressible mixing layer also show that DNS can be
helpful to support modeling in RaNS [2, 43, 59, 76]. The findings from these
studies are compared with the present mixing layer results.
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3.2.1 Turbulence kinetic energy equation

An overview of studies of the Reynolds stress closures of incompressible turbu-
lent flows is given in [86]. Already for some years, in particular the compress-
ible setting of the turbulence kinetic energy equation is extensively analysed
and modeled [81, 85]. We use the compressible formulation of the turbulence
kinetic energy equation as given in refs. [12, 48]:

∂t(ρ̄k) + Tt = P +D + Pd − ρ̄ ε, (3.3)

with

Tt = ∂j(ρ̄k ũj),

P = −ρu′′
i u

′′
j ∂j ũi,

D = Dt +Dp +Dv,

Pd = p ∂ju′′
j ,

ρ̄ ε = σij ∂ju′′
i ,

where D is split into a triple correlation, pressure and viscous term:

Dt = −1/2∂jρu′′
i u

′′
i u

′′
j ,

Dp = −∂jpu′′
j ,

Dv = ∂ju
′′
i σij .

It is stressed that the bar operator is defined as in (2.8) with infinitely long
time-averaging and is approximated by the finite-time equivalent. From Sec-
tion 2.1.1 we recall that u′′

i = ui − ũi. Furthermore, k denotes the turbulence
kinetic energy per unit mass and is defined as:

ρ̄k ≡ 1
2
ρu′′

i u
′′
i . (3.4)

The various terms appearing in (3.3) account for changes in the turbulence
kinetic energy of the mixing layer. Furthermore, Tt ≈ ũj∂j(ρ̄k) since ∂j ũj ≈
0 [107]. As a result, the left-hand side of (3.3) may be considered as the
material derivative of ρ̄k [107]. It gives the rate of change of ρ̄k following the
mean flow, with Tt the part that represents the convective motion. The time
derivative ∂t(ρ̄k) equals zero when it is based on a infinitely long time interval
of a spatially developing flow. In the rest of this thesis it is neglected. The
remaining term on the left-hand side is the turbulent transport, denoted as Tt.
The conventional description that is traditionally used for each of the terms

on the right-hand side of (3.3) is given in Table 3.2. The production P repre-
sents the rate at which kinetic energy is transferred from the mean flow to the
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Term Description
P Production
D Diffusion:

Dt Turbulent Diffusion
Dp Pressure Diffusion
Dv Viscous Diffusion

Pd Pressure-dilatation
ρ̄ ε Dissipation

Table 3.2: Terms in the turbulence kinetic energy equation.

small scales. Rewritten as −ρu′′
i u

′′
jSij(ũ)/2, this term is seen to be the rate at

which work is done by the mean strain rate against the turbulent stresses [107].
The major contribution of production for the mixing layer is from −ρu′′

1u
′′
2 ∂2ũ1

which is known to be positive for the mixing layer (see Section 3.1). The dif-
fusion D is commonly split in three terms, D = Dt + Dp +Dv, representing
turbulent diffusion, pressure diffusion and viscous diffusion respectively.2 The
triple velocity correlation is often called turbulent transport and can be re-
garded as the rate at which turbulence energy is transported through the fluid
by turbulent fluctuations. The turbulent transport resulting from correlation
of pressure and velocity fluctuations is contained in the pressure diffusion term.
The viscous diffusion quantifies the diffusion of turbulence energy caused by
molecular transport processes in the flow and is sometimes called molecular
diffusion. The pressure-dilatation Pd only arises in compressible flow since
conservation of mass yields ∂iu′′

i = 0 for incompressible flow. The remaining
term, ρ̄ε, is responsible for the decrease in turbulence kinetic energy due to vis-
cous dissipation. It is the rate at which turbulence kinetic energy is converted
into thermal energy. Finally, we define the balance, E:

E = P +D + Pd − ρ̄ ε − Tt. (3.5)

The fact that the balance is not exactly equal to zero is a result of the
finite interval of time sampling as well as the presence of errors of numerical
origin. The balance E only becomes exactly zero for an infinitely small grid
distance and infinitely long time-sampling. Longer time-averaging is needed
for the balance to get closer to zero. The amount of computer time that is
needed for a better convergence of the results is beyond the limit of this study.
Similarly as before, the filtering in the spatial setting should be performed

over x3 and t (see definition (2.8) and its finite time equivalent (2.20)). Due
to memory restrictions this can only be done during the DNS itself. Details

2Sometimes the first two (Dt + Dp) are referred to as transport [94].
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regarding the computation of the terms in the kinetic energy equation are
given in Appendix A. Basic elements are defined from which all terms in the
equation can be build. This results in a clear and simple implementation of
the energy budgets in the DNS code. Next, we evaluate the energy budgets.

3.2.2 Energy budgets

In this section we first classify the terms in the turbulence kinetic energy
equation according to their peak values at three streamwise locations. The
streamwise development of all terms is described next and shown from the
laminar to the turbulent stage at some characteristic values of x2. Finally
we give an impression at a downstream location. Data from DNS in the
transitional and turbulent stage can be helpful to test RaNS models. This is
especially the case for low Reynolds number corrections of RaNS models.
The peak value of each term in the kinetic energy equation (3.3) is collected

at three streamwise locations in the turbulent regime. The results are shown
in Table 3.3 where the energy budget terms are ordered from large to small.
According to the maximum norm, the terms of major importance are P, Dt, ρ̄ ε
and Pd. Beyond x1 ≈ 200, the normalized viscous diffusion Dv is closer to zero
than the balance E.

As a next step, in Figures 3.6.a-c we have collected the normalized energy
budgets as a function of the streamwise coordinate for three characteristic
values of x2/θ(x1). The profiles at a streamwise location in the turbulent
regime are shown in Figure 3.6.d. The viscous diffusion Dv is not included
since it cannot be distinguished from zero. We take the same signs as in the
definition for the balance E (3.5), so we plot P, Dt, Dp, Pd, −ρ̄ε and −Tt.

max(| · |) x1
(×10−3) 225 257 289
P 2.5 2.7 3.4
Dt 1.8 2.3 2.4
ρ̄ ε 1.6 1.7 1.6
Pd 0.97 1.3 1.2
Tt 0.47 0.56 0.66
Dp 0.32 0.54 0.54
E 0.14 0.19 0.22
Dv 0.10 0.076 0.081

Table 3.3: Maximum over x2 of the terms in the turbulence kinetic energy equa-
tion taken at three streamwise locations and normalized with (∆U)3/θ(x1).
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Figure 3.6: Turbulence kinetic energy profiles, normalized with ∆U3/θ(x1),
at x2 = 2.2 (a), -0.4 (b), -3.0 (c) as a function of x1 and at x1 = 275
as a function of x2/θ(x1) (d). The separate terms are denoted by: P (−−),
Dt(· · · ), Dp(−·), Pd(o), −ρ̄ε(—, negative line), −Tt(+) and E(—, line closest
to zero).
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We note that the terms can be divided into two groups. The first group
consists of terms that are either positive (P ), or negative (−ρ̄ε). From this
perspective, it seems reasonable to start modeling the balance with the pro-
duction and dissipation only, as suggested in [94]. Next, we have the group
of terms where the contribution to the kinetic energy is positive or negative
depending on x2. Some terms are positive on the mixing layer centerline and
have negative bumps on either side (Pd,−Tt), while others have a negative
value at the centerline and positive bumps (Dt,Dp).
We next discuss the profiles from Figure 3.6. Just after the inflow, the

production P around the centerline grows significantly. It is balanced by
−Tt, −ρ̄ε, Dt, and Dp, which all still are small but negative. Around the edges
of the mixing region, the transport term −Tt decreases while P, Dt and Dp

increase as a function of x1. This corresponds with results of the separation
bubble configuration in [2]. In this study, the key balance at the layer edge
close after the inflow is between on one hand convection, −Tt, which implies
a decrease of k, and on the other hand production, P , and triple moment
transport, Dt, which tend to increase k. For this inflow area away from the
wall respectively center of the mixing layer, the dissipation only plays a role
of minor importance. The transport −Tt is negative over the whole domain
close after inflow, similarly as in [2]. This is primarily due to ũ1∂1k since k
increases rapidly with x1 during transition. Further downstream it remains
negative around the edge of the layer while it gets positive at the mixing layer
centerline as well as close to the wall after the reattachement of the bubble.
The pressure-dilatation behaviour, which is typical for compressible turbu-

lence, corresponds to results from [101] in the sense that it is positive around
the centerline and negative at both mixing layer edges. In an incompress-
ible setting, the pressure-dilatation equals zero. For the low convective Mach
number (Mc = 0.2) used in [101] and here, we therefore might expect a small
contribution of Pd. This is not the case however, as can be observed from
Table 3.3 and Figure 3.6. The normalized Pd profile from [101] even is a fac-
tor two larger than the present results. So, in both the temporal and spatial
configuration the pressure-dilatation is not negligible.
As mentioned before, the basic assumption in several RaNS modeling ap-

proaches is the balance between production and dissipation of kinetic energy.
The dissipation profile in Figure 3.6.d is slightly wider than the production
profile, similarly as in [77]. This implies that, relative to the production, en-
ergy is dissipated in the outer sides of the mixing region. This results in a
wide profile of −Tt and thus the material derivative of ρ̄k is positive at the
edges. Summarizing, comparison of all terms in the turbulence kinetic energy
equation shows that for the present flow all terms, except for the viscous dif-
fusion, should be taken into account. This was already concluded before for
spatially developing shear flows other than the mixing layer [2, 43, 59]. Next,
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we consider the integrated energy budgets.
In order to study the self-similarity, the contour plot for the dissipation

is shown in Figure 3.7. Especially in the outer ranges of the mixing layer,
the contour lines are linear. The turbulence kinetic energy also exhibits this
tendency to self-similar behaviour as is clear from Figure 3.8. Furthermore,
the contour plot demonstrates that ∂ρ̄k/∂dx1 is positive. Finally we note that
the rate of change of ρ̄k is larger in the x2-direction.
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Figure 3.7: Contour lines of the dissipation ρ̄ε normalized with ∆U3/θ(x1) in the
(x1, x2)-plane at 10 values equally distributed between 1.6× 10−4 (on the flanks)
and 1.6× 10−3 (at the centerline).
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Figure 3.8: Contour lines of ρ̄k in the (x1, x2)-plane at 10 values equally dis-
tributed between 1× 10−4 (on the flanks) and 1× 10−3 (at the centerline).
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3.2.3 Integrated energy budgets

In this subsection we study the total contribution of the terms in the turbu-
lence kinetic energy equation at a streamwise location by integrating over x2.
The results are shown in Table 3.4 for the same streamwise locations as in
Table 3.3.
Although the turbulent diffusion Dt itself has a large contribution in the

turbulence kinetic energy budgets, the turbulent diffusion integral
∫
Dt dx2

is negligible. In fact, the integral of all terms contained in D is small. It is
even smaller than the numerical approximation of the (finite time) integral
over the balance E itself. The total diffusion integral is small since D is in
divergence form and its values at the upper and lower free-stream boundary
can be neglected.
Furthermore,

∫
Tt dx2 is more important than

∫
Pd dx2. As shown in Ta-

ble 3.3 and Figure 3.6, the peak of Pd is about a factor two to three smaller than
the production and dissipation. The integrated pressure-dilatation

∫
Pd dx2

is much smaller, however, than the integrated production and dissipation. In
the next chapter, the data presented in this and the previous subsection is
evaluated with respect to RaNS assumptions.

3.2.4 Sensitivity analysis

We consider the sensitivity of the flow predictions due to changes in the grid
resolution and the length of the time-averaging. An extensive sensitivity study
of the DNS results has already been discussed in Section 2.3. It is repeated
here for some energy budgets that represent combinations of terms that before
were only considered separately. This is done in order to verify that the terms

∫
· dx2 x1

(×10−4) 225 257 289
P 87.8 84.2 97.5
ρ̄ ε 69.2 70.6 68.8
Tt 16.3 12.7 32.2
Pd 1.3 2.5 2.7
E 2.5 2.1 -1.3
Dt -0.75 -0.76 -0.88
Dp -0.29 -0.39 0.49
Dv -0.059 -0.085 -0.17

Table 3.4: Integral over x2 of the terms in the turbulence kinetic energy equation
taken at three streamwise locations and normalized with (∆U)3.
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together do not cause cumulative effects. In Figure 3.9 we have collected the
normalized P, ρ̄ε and Pd which are characteristic terms in the turbulence ki-
netic energy equation. These quantities are evaluated using the DNS results
for the three resolutions described in Table 2.2 and are based on the longest
time sample (from T0 = 25 TF until T = 150 TF , with T0 and TF defined in
Section 2.2.1). It is clear that the middle- and fine-grid results are close. Devi-
ations occur mainly around the centerline. The maximum deviation between
the normalized production of the middle and fine grid equals 2 × 10−4 (8%)
and this is a factor of two smaller than the maximum deviation between the
coarse and fine grid.
The balance E, introduced in (3.5), is defined from all terms in the kinetic

energy equation that do not vanish after infinitely long time averaging. The
DNS only covers a finite time sample. The DNS result for E quantifies the
error that is made when averaging over a finite time interval and computing
at a numerical grid. It is found that when a finer grid is used, the DNS results
for the balance are closer to zero. The maximum deviation from zero at the
same x1 value as in Figure 3.9 equals 1× 10−4, 2× 10−4 and 6× 10−4 for the
fine, middle and coarse resolution respectively.
Next we vary the length of the interval used for the time-averaging. The

normalized fine-grid results are plotted in Figure 3.10 based on the time sample
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Figure 3.9: Profiles of P, −ρ̄ ε and Pd as a function of x2/θ(x1) at x1 = 241,
normalized with ∆U3/θ(x1) and plotted for the coarse (−·), middle (−−) and
fine (—) resolution DNS (based on the longest time sample available).
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Figure 3.10: Profiles of P, −ρ̄ ε and Pd as a function of x2/θ(x1) at x1 = 241,
normalized with ∆U3/θ(x1) and averaged over a short (−·), middle (−−) and
long (—) time interval (from t = 552 = 25 TF until T1 = 70 TF , T2 = 110 TF
and T3 = 150 TF respectively and based on the fine-grid results).

from T0 = 25 TF until times T1 = 70 TF , T2 = 110 TF and T3 = 150 TF .
The maximum deviation between the normalized production for the middle
and long time interval at x1 = 241, which is a streamwise location in the
turbulent regime, equals 1 × 10−4 (5%). This is a factor of two smaller than
the deviation between the short and long time interval. For the normalized
balance, E, the maximum deviation from zero equals 1 × 10−4 for the long
time interval. This is a factor of two smaller than the equivalent for the middle
and short time intervals. Note that already from the shortest time interval the
corresponding balance is reasonable since it is one order of magnitude smaller
than for example P and ρ̄ε.

3.3 Conclusions

The first motivation of this chapter involved a further validation of the DNS
based on the statistical results from the previous chapter. The database of a
turbulent shear flow simulation should display self-similarity. Moreover, the
total of the energy budgets should be conserved. A second motivation involved
both properties as such. In the first part of this chapter, we have shown some
evidence of self-similarity of the mixing layer. The development lengths showed
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that the momentum thickness, already displayed in the previous chapter, be-
comes self-similar after a short downstream distance, followed by the averaged
streamwise momentum density and finally the streamwise turbulence intensity.
This order of variables becoming self-similar corresponds to observations from
physical experiments. Most profiles in the streamwise development of these
properties are close to results of other numerical and experimental studies.
They can be used to describe the statistics on all downstream locations in the
self-similar region of the DNS.
In the second part of this chapter the contributions to the budgets of the

turbulence kinetic energy have been presented. The sensitivity analysis showed
that results of the finest-grid DNS that were sampled over the longest time
interval available, appear of sufficient accuracy for our purposes. The data can
be improved by averaging longer in time with the same resolution, but this
is beyond the limit of this study. We have described the development of all
terms in the turbulence kinetic energy equation when moving in downstream
direction. Except for the viscous diffusion, all terms should be taken into
account. After integration over the normal direction, the contribution of the
diffusion terms as well as the pressure-dilatation could be neglected. As a
result, the integrated dissipation was balanced by the integrated production
and transport.
An interesting point for further study is the question how much the sin-

gle spanwise wavelength constrains the simulation in developing into a three-
dimensional numerical turbulent mixing layer, i.e., will a larger spanwise do-
main result for example in other peak values of the Reynolds stress tensor
and a better approximated self-similar behaviour? The results and the work
done in [82, 104] also encourage the application of the numerical method to
large-eddy simulations. These items will be considered in Chapters 5 and 6.





Chapter 4

Guidance for RaNS modeling
by DNS results

The modeling of the Reynolds stress tensor has been a topic of great interest
for several decades. This tensor arises in the Navier-Stokes equations after
ensemble averaging. For some years, databases from direct numerical simula-
tions of relatively low Reynolds number turbulent flows in simple geometries
are available with which individual model assumptions can, in principle, be
tested directly. The data can also be used to support further development
of these models. The turbulence kinetic energy can be used to specify the
eddy viscosity and thus model the Reynolds stress tensor within the gradient
hypothesis framework [48].
One of the main ideas in modeling the turbulence kinetic energy equation is

the assumption of a balance between production and dissipation [94]. Viscous
shear stresses increase the internal energy of the fluid and decrease the kinetic
energy of the turbulence. Turbulence needs a continuous supply of energy to
make up for these viscous losses. If no energy is supplied, turbulence decays
rapidly. In order to keep the system going, a production source is required. In
Chapter 3 we already described the development of all terms in the turbulence
kinetic energy equation throughout the whole streamwise domain. The terms
were classified according to the maximum norm. Comparison showed that for
the present results most terms need to be taken into account, i.e., the balance
does not consist of production and dissipation only. The classification of the
terms changed when they were integrated over the normal direction instead
and the integrated production and transport appeared to largely balance the
integrated dissipation. The resulting integrated balance is evaluated in more
detail in this chapter.
The eddy viscosity assumption is considered, in particular for the standard

k − ε model and two low Reynolds number corrections. The best comparison
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for the Reynolds stress between the DNS results and the k − ε model can be
used to optimize model parameters. Also the diagonal components of the Rey-
nolds stress tensor are evaluated. Finally we consider the gradient-diffusion
hypothesis. It is often used in RaNS and relates the turbulent diffusion with
the turbulence kinetic energy derivative.
The chapter is organized as follows. In Section 4.1 the Reynolds-averaged

equations are given. We introduce the concept of an eddy viscosity that is
used to close the RaNS model equations. The DNS results are used for an
a priori analysis in Section 4.2. All terms of the kinetic energy equation have
already been evaluated from the DNS results and interpreted in Chapter 3.
This study is continued with the evaluation of three assumptions that are typi-
cal for modeling in RaNS. First a balance between production and dissipation
is investigated. Also the eddy viscosity assumption is considered and com-
pared with results of the standard k − ε model and two low Reynolds number
corrections. Finally, the gradient-diffusion hypothesis is evaluated with the
use of the present DNS results. The findings are summarized in Section 4.3.

4.1 Governing equations

In this section we give the equations that are relevant for the study of tur-
bulence kinetic energy budgets. We assume that ensemble averaging can be
replaced by averaging over the homogeneous directions (and time). Averaging
over the homogeneous coordinates as defined in (2.8) is applied to the Navier-
Stokes equations (2.1)-(2.3). This results in a set of steady averaged equations,
which are the well-known Reynolds-averaged Navier-Stokes equations. We use
the spatial frame of reference, in which only the spanwise direction is homo-
geneous. In this setting, averaged quantities are independent of time. The
averaged continuity and momentum equations are the following:

∂j(ρ̄ũj) = 0, (4.1)
∂j(ρ̄ũiũj) + ∂ip − ∂j σ̄ij = −∂j(ρ̄Rij) (i = 1, 2), (4.2)

with σ̄ij = Sij(ũ)/Re as defined in (2.5). For the present configuration, the
averaged momentum equation in the spanwise direction (i = 3) is trivial. In
the filtered system of equations (4.1)-(4.2) we have ordered the terms such that
the left-hand side is similar to the corresponding terms in the Navier-Stokes
equations (2.1)-(2.3) but now applied to the filtered variables ρ̄, ũj and p̄.
The filtering of the nonlinear terms gives rise to the right-hand side which

requires modeling in order to close the system of equations. The only term in
this closure is the Reynolds stress tensor, Rij = ρu′′

i u
′′
j/ρ̄ (see (2.10)). A set of

equations for the Reynolds stress tensor can be obtained from the conservation
of momentum and mass. These are called the Reynolds stress equations [12,
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48] and comprise the turbulence kinetic energy equation which was already
introduced in Chapter 2. These equations introduce triple correlations, such
as ρu′′

i u
′′
ju

′′
k. Additional equations could be derived for these correlations, but

would introduce even higher order correlations. The system of equations is
not closed. Therefore it is necessary to introduce models either for the terms
in the Reynolds stress equation or for the Reynolds stress tensor itself. An
extensive overview of several models that are used in RaNS is given in [107].
The earliest model is due to Boussinesq [15] and is still widely used. Here,

in analogy with the description of viscous stresses in a laminar flow (2.5), the
Reynolds stress tensor is assumed to be proportional to the strain rate tensor
applied to the Favre-filtered velocity:

−ρu′′
i u

′′
j = µt Sij(ũ)− 2/3 ρ̄k δij . (4.3)

The assumption introduces the eddy viscosity µt and the turbulent kinetic
energy k, defined in (3.4), that need to be determined.
The unknown eddy viscosity µt has dimensions µt ∼ density × velocity ×

length. A fundamental assumption in the development of turbulence models
for RaNS is Morkovin’s hypothesis [30],√

ρ′2 � ρ̄,

which assumes that the effect of density fluctuations ρ′ on the turbulence struc-
ture are unimportant. For the present case, this hypothesis is valid within 1%.
Therefore it is generally assumed that the density can be taken to be the local
mean density ρ̄. Thus the eddy viscosity is expressed as

µt ∼ ρ̄ v l, (4.4)

where v and l are the ‘local’ velocity and length scales that are supposed to
describe the turbulence [85]. The problem is now reduced to specifying v and
l. Several popular models exist and they are categorized according to the way
they specify v and l. Two-equation models are commonly used [85]. Almost all
two-equation models employ the turbulence kinetic energy to characterize the
velocity scale but there are many different approaches for the characteristic
length scale l.
One of the most popular two-equation models is the k − ε model from [47],

and usually referred to as the ‘standard’ k − ε model. Here, ε denotes the
dissipation per unit mass, as already defined in (3.3). The model uses the
following expressions for the characteristic velocity and length scale:

v =
√
k,

l = k3/2/ε.
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Now the eddy viscosity is expressed in terms of quantities that usually are
known from the DNS results:

µt = Cµ ρ̄ k
2/ε, (4.5)

using (4.4). The model constant Cµ is usually set to 0.09.
The k − ε model, like many others, has coefficients that are tuned for

high-Reynolds number applications. Many researchers have attempted to for-
mulate viscous corrections for the k − ε model. These so-called low Reynolds
number (LRN) corrections usually are formulated for incompressible shear lay-
ers [52, 76, 107]. The idea is to introduce a damping function fµ that damps
the near wall model approximation that usually overpredicts the eddy viscos-
ity. The variant described in [52] is adapted to the compressible formulation:

µt = ρ̄νt = Cµ fµ ρ̄k
2/ε∗,

with

ε∗ = ε − ε0,

ρ̄ε0 =
2

ρ̄ Re

(
∂2

√
ρ̄k

)2
,

fµ = exp(−3.4/(1 +ReT /50)2),

ReT =
ρ̄k2 Re

ε∗
.

It is clear that for large Reynolds numbers Re, ReT becomes large, fµ ap-
proaches one and ε0 zero. As a result, the low-Reynolds number correction re-
sults are approximately equal to results of the standard k − ε model if Re � 1.
For moderate Reynolds numbers, the contribution of ε0 to ε cannot be ignored.
Combined with a steep kinetic energy gradient in normal direction, ε0 may ap-
proach ε and result in a large value of µt.
A more recent variant described in [107] is defined for the k − ω model.

Rewritten for the k − ε formulation, this implies1:

µt = ρ̄νt = Cµ fµ ρ̄k
2/ε,

with

fµ =
1/40 +ReT /67
1 +ReT /67

,

ReT =
ρ̄k2 Re

ε
.

1Note that the formulation of [107] with respect to ReT is changed here in order to
preserve the similarity with the notation of the LRN correction from [52]. The Cµ is no
longer included in the definition of ReT . As a result, the term ReT /6 in the definition of fµ

is replaced by ReT · Cµ/6 = ReT /67.
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Again, a large Reynolds number, Re, results in a value of fµ that is close to
one. It is important to perform direct numerical simulations in order to get
an impression of the validity of these RaNS models. We next continue with a
comparison between several model assumptions and the present DNS data.

4.2 RaNS approximations

Three assumptions are studied that are typical for modeling in RaNS. This
is done in the sense of an a priori analysis of the DNS data. We start with
the assumption of a balance between production and dissipation [94]. Sub-
sequently the eddy viscosity hypothesis is considered. The Reynolds stress
tensor, based on results of the k − ε model and two of its low Reynolds num-
ber corrections, is evaluated and compared with the DNS predictions. Finally
we consider the gradient-diffusion hypothesis. In this chapter the results are
based on the fine-resolution DNS and the largest time sample available (until
T = 150 TF ).

4.2.1 Production equals dissipation?

In several RaNS models, a local balance of production and dissipation of tur-
bulence kinetic energy is assumed [94]. In the previous chapter, the energy
budgets of the turbulence kinetic energy equation were collected. It was al-
ready concluded that almost all terms should be included. Next to the pro-
duction and dissipation, also the turbulent diffusion and pressure-dilatation
contributions had a significant contribution to the behaviour of the turbulence
kinetic energy.
Subsequently, the balance was integrated over x2 in order to consider the

total contribution of each quantity at one streamwise location. The terms
that remained were

∫
P dx2,

∫
ρ̄ ε dx2 and

∫
Tt dx2. This is summarized in

Figure 4.1 where the streamwise evolution of the integral of these terms is
plotted. It is clear that both the integral production P and transport Tt
decrease in the same way between x1 = 150 and x1 = 250 and then increase
again until x1 = 300. The main part of P comes from −ρu′′

1u
′′
2∂2ũ1 and −ρu′′

1u
′′
2

also showed a decrease followed by an increase from x1 = 150 (see Figure 3.4
where the peak of ρu′′

1u
′′
2 is plotted as a function of x1). Furthermore, the

fluctuations in
∫
Tt dx2 are balanced by the small fluctuations around zero

in the pressure-dilatation
∫
Pd dx2. Summarizing, the dissipation

∫
ρ̄ ε dx2 is

about equal to
∫
(P − Tt) dx2 and remains at about the same level from x1 =

200 onward.
As a result, it can be concluded that the assumption of a balance of produc-

tion and dissipation is not valid in a local sense. On the level of budgets inte-
grated over x2, the contribution of several terms could, however, be neglected.
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Figure 4.1: Main terms of the tke-equation integrated over x2, normalized with
∆U3 and plotted as a function of x1.

The integrated production and dissipation are of equal order of magnitude.
However, the balance result is definitively improved when also the integrated
transport term is included in the integral balance. The streamwise evolution
of the integrated dissipation with respect to the combination of integrated
production and transport displays deviations up to ten percent. When also
the integrated pressure-dilatation is included, this deviation is reduced with a
factor of two. This evaluation of RaNS approximations is next continued with
the assumption of eddy viscosity.

4.2.2 Eddy viscosity assumption

We consider the eddy viscosity relation, presented in Section 4.1. We recall
the following expression for the eddy viscosity (see (4.3)):

µij(x1, x2) =
Nij

Dij
=

−ρu′′
i u

′′
j + 2/3 ρ̄kδij

∂jũi + ∂iũj − 2/3∂kũkδij
, (4.6)

with numerator Nij and denominator Dij . Here, a tensor expression is used
for the eddy viscosity µt since it may be different for each component of
the Reynolds stress tensor. For the present results, Nij and Dij are largest
for (i, j) = (1, 2). The dominant term of D12 is ∂2ũ1, and µt is approximated
by:

µ12 ≈ −ρu′′
1u

′′
2

∂2ũ1
. (4.7)
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In this way, we have constructed an eddy viscosity that can be used to test
RaNS model assumptions. From the DNS results of the previous chapter, we
know that both the numerator and the denominator are positive. As a result,
the eddy viscosity is positive as it should.
In Figure 4.2 we show the actual Reynolds stress profile at a characteris-

tic x1 and x2 location and compare it with the standard k − ε model approx-
imations and two LRN corrections. In Table 4.1 the three settings that are
considered have been summarized. We stress that k and ε used in the models
are not approximated but directly evaluated from the DNS result. Figure 4.2.a
shows that the model results are approximately symmetric while the actual
Reynolds stress displays a skewness. In the far field, the best approximation
for the Reynolds stress arises from the standard k − ε model. Around the cen-
terline, the standard k − ε prediction is worse than the two LRN corrections,
however. On the whole, the agreement is quite limited.
Results of an incompressible turbulent channel flow [43] show that the

standard k − ε result also underestimates the DNS at low-shear locations far
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Figure 4.2: Negative Reynolds stress profiles, −ρu′′
1u

′′
2, (—), standard k − ε

approximations (−−), LRN corrections from [52] (−·) and from [107] (· · · ) at
x1 = 257 as a function of x2 (a) and at x2 = −4 as a function of x1 (b).

Reynolds stress

DNS ρu′′
1u

′′
2

k − ε Cµ ρ̄k
2/ε ∂2ũ1

LRN Cµ fµ ρ̄k
2/ε∗ ∂2ũ1

Table 4.1: Expressions for the Reynolds stress (approximation).
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from the wall while the LRN result from [52] is even smaller. The behaviour
close to the wall in channel flow may be compared with the mixing layer
centerline in the sense that both have a steep streamwise velocity gradient
that decreases again when moving away from this region. In ref. [43] the DNS
values close to the wall are overestimated by the standard k− ε model and the
LRN prediction. So, the findings from the channel flow regarding the modeling
of the Reynolds stress support the present mixing layer findings.
Finally, we focus on the value of Cµ which throughout this chapter was

taken equal to 0.09 as is usually done [47, 52, 107]. From Figure 4.2.b it is clear
that for this value of Cµ the centerline k − ε result is in reasonable agreement
with the DNS result. This can be illustrated in a more quantitative way by
calculating the value of Cµ such that the integral contribution of the exact
and the k − ε approximation for ρu′′

1u
′′
2 are equal. Based on (4.5) and (4.7),

we minimize the error that is made:

−ρu′′
1u

′′
2 − Cµρ̄k

2/ε ∂2ũ1.

The expression for the value, C∗
µ, that fits the DNS result best, is found from

the following least square approximation:

C∗
µ =

∫∫
AB dx2dx1∫∫
BB dx2dx1

, (4.8)

where

A = −ρu′′
1u

′′
2,

B = ρ̄k2/ε ∂2ũ1.

For the LRN settings, C∗
µ is computed in a similar way with fµ included in B.

Results for C∗
µ are collected in Table 4.2.

It is clear from the table that relatively high profiles in Figure 4.2.a give
rise to a lower value of C∗

µ. These overall values equal 0.075, 0.085 and 0.100 for

xs xe k − ε LRN [52] LRN [107]

50 290 0.071 0.085 0.098
100 290 0.074 0.086 0.099
150 290 0.079 0.087 0.102
200 290 0.076 0.084 0.097

Table 4.2: Values of C∗
µ for the standard k − ε model and two of its LRN correc-

tions, based on different streamwise intervals from xs to xe.



4.2. RaNS approximations 71

respectively the k−ε model and LRN corrections from [52] and [107]. We note
that the values of C∗

µ based on several streamwise intervals are approximately
equal within each model. However, when the profiles at several values of x1 are
compared, it is clear that the local difference is still large. In Figure 4.2.a, the
difference between the DNS and the k−ε result is up to 1.5×10−3 which is fifty
percent of the maximum DNS value of 3.0 × 10−3. As a result, optimization
does not resolve the more severe problems with eddy viscosity.
Up to now, only the Reynolds stress, ρu′′

1u
′′
2 was considered. We next study

the turbulence intensities, i.e., the diagonal components of the Reynolds stress
tensor. Evaluating the eddy viscosity assumption (4.6) for i = j = 1 results
in:

ρu′′
1u

′′
1 = −µt(2∂1ũ1 − 2/3∂kũk) + 2/3 ρ̄k

≈ 2/3 ρ̄k,

since the term between brackets can be neglected as was verified in the present
DNS setting. Its value is less than three percent of 2/3 ρ̄k. In the same way
we can conclude this for i = j = 2 where ∂2ũ2 is small and for i = j = 3
using ũ3 ≡ 0. Thus, for the present flow, the eddy viscosity µt does not play a
role of importance in the modeling of the diagonal components of the Reynolds
stress tensor. As a result, the eddy viscosity assumption implies that the
turbulence is approximately isotropic, i.e.,

2
3
ρ̄k ≈ ρu′′

1u
′′
1 ≈ ρu′′

2u
′′
2 ≈ ρu′′

3u
′′
3.

Moreover, we conclude that results of the LRN models (for i = j) cannot be
distinguished from the standard k − ε results. As a result, the LRN models
only appear to be relevant for the Reynolds stress ρu′′

1u
′′
2.

From Chapter 3 we know that the peaks of the three diagonal elements
of the Reynolds stress tensor are not at the same level. This contrast is
clearly illustrated in Figure 4.3. The turbulence intensities, ρu′′

i u
′′
i , and their

predictions from the standard k − ε model for all three directions are collected
at a characteristic streamwise location. It is clear from the figure that the
k − ε approximation is equal for all three turbulence intensities. This profile
is close to that of ρu′′

2u
′′
2, while it underestimates ρu′′

1u
′′
1 and overestimates

ρu′′
3u

′′
3. The resulting contour plot for ρu

′′
2u

′′
2 is shown in Figure 4.4 together

with its k − ε prediction. The k − ε approximation provides a good estimate
of this particular turbulence intensity. However, in Chapter 3 we conjectured
that the spanwise turbulence intensity will increase when a wider domain is
used for the simulation. As a result, k will increase as well and this may change
the adequacy of the eddy viscosity assumption. Also other turbulent shear flow
studies find a structurally higher level for ρu′′

1u
′′
1 compared to ρu′′

2u
′′
2 [33, 105].

This indicates a need for anisotropic models.
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Figure 4.3: Streamwise (a), normal (b) and spanwise (c) turbulence inten-
sities, ρu′′

i u
′′
i (—), as well as the standard k − ε prediction, −µkε(2∂iũi −

2/3∂kũk) + 2/3 ρ̄k (−−), with i = 1, 2 and 3 at x1 = 257 as a function of x2.
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Figure 4.4: Contour plot of normal turbulence intensity ρu′′
2u

′′
2 from the DNS (—)

and based on µkε (−−) at isovalues (2, 4, 6) × 10−3 (from sides to centerline).
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4.2.3 Gradient-diffusion hypothesis

In the k − ε model the turbulence kinetic energy equation is solved. One
of the terms in this equation is the triple correlation, −1

2ρu
′′
i u

′′
i u

′′
j . Based on

Section 3.2.2, it is clear that this term has a large contribution and should
be taken into account. It has to be modeled and the standard approximation
made to represent transport of scalar quantities in a turbulent flow is that of
gradient-diffusion. Its origin is in molecular transport processes, where φu′

j ∼
µt ∂jφ for the incompressible case and any quantity φ [107]. For comparison
with incompressible flow, we recall the velocity fluctuation with respect to
the bar-filter: u′

i = ui − ūi. For the compressible setting, the relation results
in −1

2ρu
′′
i u

′′
i u

′′
j ≈ µt/(ρ̄ σk)∂j(ρ̄k), where the closure coefficient σk usually is

taken equal to one [107]. This approximation is referred to as the gradient-
diffusion hypothesis and leads to

−1
2
∂jρu

′′
i u

′′
i u

′′
j ≈ ∂j

(µt
ρ̄
∂j ρ̄k

)
. (4.9)

A first impression of this model can be obtained from Figure 3.6 which
shows that the shape of the profile ofDt corresponds with the shape of ∂22k (see
also Figure 3.8). Based on the findings from Section 4.2.2 we employ µ12 for
the eddy viscosity, so:

−1
2
Gj ≈ µ12

ρ̄
∂j(ρ̄k), j = 1, 2, (4.10)

where Gj denotes the triple correlation in the j-direction, ρu′′
i u

′′
i u

′′
j . The signs

of both sides of (4.10) are collected in Table 4.3. It is clear from the table
that the sign of µ12/ρ̄ ∂1ρ̄k is not corresponding to that of −G1 for x2 < 0.
However, since the derivative with respect to x1 is always small compared to
the derivative with respect to x2, both terms are of minor importance in (4.9).
We next compute the correlation coefficients. Finally, the profiles of both sides

x2 < 0 x2 > 0 max×10−4

µ12/ρ̄ ∂1ρ̄k > 0 > 0 0.059
µ12/ρ̄ ∂2ρ̄k > 0 < 0 1.3
−ρu′′

i u
′′
i u

′′
1/2 < 0 > 0 3.8

−ρu′′
i u

′′
i u

′′
2/2 > 0 < 0 2.8

Table 4.3: Signs and maxx1,x2(| · |) values of terms in the gradient-diffusion
hypothesis and evaluated for the DNS results.
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in (4.9) are compared directly. In the rest of this section, µ12 is evaluated
according to approximation (4.7), if not mentioned otherwise.
In order to study the model hypothesis (4.10) more quantitatively, we

define a correlation coefficient. Several correlations are shown in Figure 4.5
as a function of the streamwise coordinate. The correlation coefficient C is
defined as follows:

C(f, g) =
(f, g)√

(f, f) · (g, g)
,

where (f, g) denotes the integral of f g over x2. By definition |C| ≤ 1 and is
close to one if f is close to αg with α an arbitrary constant. Therefore, we also
compare the profiles directly. The correlation coefficient between −G1/2 and
µ12/ρ̄ ∂1(ρ̄k) (j = 1 in (4.10)) is weak, with a correlation coefficient below 0.5.
In contrast, the correlation coefficient between −G2/2 and µ12/ρ̄ ∂2(ρ̄k) is
larger than 0.95 (dashed line) for about the whole streamwise domain be-
yond x1 = 60. Finally we included the correlation coefficient between −G1/2
and +G2/2. This correlation value is even better.
For a proper analysis, also the profiles themselves should be compared

directly. In Figure 4.6 the four terms are plotted as a function of x1 and x2
at some specific value of x2 and x1 respectively. As expected, µ12/ρ̄ ∂1(ρ̄k) is
very small. The profiles of −G2/2 and µ12/ρ̄ ∂2(ρ̄k) display relatively the same
spatial variations. However, −G2/2 is about a factor two to three larger than
µ12/ρ̄ ∂2(ρ̄k). So, the gradient-diffusion assumption is satisfied better when we
adjust the closure coefficient to σk = 2/5.
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Figure 4.5: Correlation coefficient between −G1/2 and µ12/ρ̄ ∂1(ρ̄k) (—), be-
tween −G2/2 and µ12/ρ̄ ∂2(ρ̄k) (−−), and between −G1/2 and +G2/2 (−·) as
a function of the streamwise coordinate.
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Figure 4.6: Profiles of +G1/2 (—), −G2/2 (−−), µ12/ρ̄ ∂1(ρ̄k) (−·) and
µ12/ρ̄ ∂2(ρ̄k) (· · · ), as a function of x1 at x2 = −4 (a) and as a function of
x2 at x1 = 257 (b).
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Figure 4.7: Profiles of −∂jGj/2 (—) and ∂j(µ12/ρ̄ ∂j(ρ̄k)) for the exact evalua-
tion (−−) and the k − ε result (· · ·) as a function of x1 at x2 = −1 (a) and as a
function of x2 at x1 = 257 (b).

Finally these quantities are compared at the divergence level from rela-
tion (4.9). In Figure 4.7 we have collected the profiles from both sides of this
approximation, again at some specific value of x1 and x2. Also the evaluation
based on the standard k − ε result is included. Similarly as in the turbulent
channel study from [43], the turbulent diffusion is larger than ∂jµ12/ρ̄ ∂j(ρ̄k)
when µ12 is evaluated exactly. When the latter is based on the k − ε result,
where C∗

µ is taken equal to the traditional value of 0.09, the positive peaks
in Figure 4.7.b move closer to zero. On the contrary, they grow with some
factors in [43].
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4.3 Conclusions

In this chapter a priori comparisons between the DNS data and RaNS ap-
proximations have been made. Already in the previous chapter, it was found
that the turbulence kinetic energy balance could not be reduced to a balance
between only production and dissipation. Considering the integrated balance,
the contribution of several terms could be neglected. Moreover, the integrated
production and dissipation approximately balanced each other when also the
integrated transport was included.
Next, the eddy viscosity assumption was considered for the Reynolds stress.

This was done for the standard k − ε model and two low Reynolds number
corrections. All three models displayed quite large deviations from the DNS
result, either around the centerline peak value or at the edges of the mixing
layer. However, when computing the coefficient Cµ that results in the best
fit, in the sense of equal integral contributions of DNS and k − ε results as
well as LRN corrections, the deviation from the traditional value was found
to be only up to fifteen percent. For the remaining components in the Rey-
nolds stress tensor, the eddy viscosity contribution could be neglected. As a
result, the eddy viscosity assumption resulted in equal turbulence intensities
for all three directions, similarly as in isotropic turbulence. This was not in
correspondence, however, with the DNS results.
The gradient-diffusion hypothesis models the main diffusion term with the

eddy viscosity and turbulence kinetic energy. This was first evaluated in a
global way by collecting signs of the relevant terms. The term containing the
streamwise derivative of k was close to zero, as expected. Furthermore, a cor-
relation was defined to measure the correspondence of several combinations of
terms. Similarly as for the analysis based on the signs of the relevant terms,
the hypothesis was not satisfied in streamwise direction. On the divergence
level, only the contribution of the normal direction is important. As a result,
the correlation with the turbulent diffusion was considered to be satisfactory.
Finally, the profiles were compared for characteristic locations of x1 and x2.
The +ρu′′

i u
′′
i u

′′
1, −ρu′′

i u
′′
i u

′′
2 and µ12/ρ̄ ∂2(ρ̄k) profiles relatively behaved approx-

imately the same, with both triple correlations even at approximately the same
level, while the term with the normal derivative of k was a factor two to three
smaller. So, based on this direct comparison, the gradient-diffusion hypothesis
is approximately satisfied, provided we use an adapted closure coefficient.
The model approximations acquired in this chapter may be used for the

evaluation of some main contributions in the balance of the turbulence kinetic
energy. Based on the model results for the Reynolds stress tensor, the pro-
duction could be evaluated. The main part of the diffusion could be modeled
with use of the gradient diffusion hypothesis.
Summarizing, we have evaluated three assumptions that often are em-



4.3. Conclusions 77

ployed in RaNS studies. The assumption of a local balance between production
and dissipation was not supported by the present DNS result. Based on the
Reynolds stress, a lower value for the model coefficient in the eddy viscosity
assumption was found. The diagonal Reynolds stress tensor components pre-
scribed a need for anisotropic models. The closure coefficient in the gradient-
diffusion hypothesis should be adapted as well to a value of around 2/5. Finally
we stress that this study of RaNS approximations has been restricted to an
a priori analysis. Similarly as in LES, an a posteriori evaluation may imply
other findings [104]. In the next chapter the DNS data is employed for the
analysis of a posteriori LES modeling.





Chapter 5

Assessment of large-eddy
simulation for the spatial
mixing layer

The previous three chapters were devoted to direct numerical simulation (DNS)
and the extraction of consequences for RaNS models from it. Such simulations
are very costly since all scales of the turbulent motion must be accurately re-
solved. In practice this limits the Reynolds number, the complexity and the
spatial extent of the flow that can be simulated. This suggests that large-eddy
simulation (LES) might be better suited to study high-Reynolds-number fully
developed mixing layer turbulence over long streamwise intervals. In LES one
explicitly solves a coarse-grained version of the Navier-Stokes equations. The
collective effect of the small scales on the large scales is taken into account
through a ‘subgrid-model’. Although LES is computationally much less ex-
pensive, it has the disadvantage that it leaves open the possibility of significant
errors resulting from the approximation of the unknown subgrid stress by a
model. Moreover, the influence of the specific numerical scheme used in LES
needs to be assessed in detail.
The main goal of this chapter is the assessment of LES through comparison

with DNS. Based on the results of this chapter, we specify a subgrid-model,
a suitable resolution and initial and boundary conditions for LES of more
complex flows, presented in Chapter 6. Throughout the present chapter we
retain the ‘minimal mixing layer’ as used up to now. In the analysis we incor-
porate various flow quantities. These involve instantaneous variables, mean
quantities, fluctuation characteristics and properties such as self-similarity.
The study of self-similarity in turbulent shear flows, as considered in Chap-

ter 3, requires a large computational domain as well as long time-sampling.
This makes the LES technique very suitable. Already in Chapter 2 we found

79
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that the current configuration only displayed signs of self-similarity for the mo-
mentum thickness, streamwise mean momentum density and the streamwise
turbulence intensity. The remaining components of the Reynolds stress tensor
did not display self-similar behaviour, perhaps because of a lack of streamwise
or spanwise domain length. We come back to this subject in the next chapter
where a feasibility study is performed with regard to the numerical simulation
of more realistic mixing layers.
In the present chapter, large-eddy simulations for the reference configura-

tion described in Chapter 2 are performed. This will involve various subgrid-
models. The transition from laminar to developed turbulent flow is monitored
and the performance of the subgrid-models is investigated in both the transi-
tional and the turbulent regime. The present simulations and the equivalent
temporal mixing layer study from [104] are compared. In the rest of this chap-
ter, we refer to the study in [104] as the temporal mixing layer. In order to
develop LES in a reliable manner, we study the sensitivity regarding resolution
and boundary conditions. We recall that the ‘minimal mixing layer’ as used
up to now is not possible in laboratory experiments. Especially the narrow
spanwise direction with its periodicity condition is not physical. So, similarly
as for the DNS we should be careful in the comparison of the LES results
with experimental findings. This is postponed until the next chapter where
we relax this constraint.
LES of the temporal mixing layer is extensively described in [104] where

several models were employed and compared. It appeared that at a rela-
tively low Reynolds number the dynamic models were considerably better
than non-dynamic models. The dynamic mixed model which combines the
scale-similarity model of Bardina [5] with a dynamic eddy viscosity displayed
the best performance although the differences among the dynamic model pre-
dictions are comparably small [104]. The values of convective Mach number
and Reynolds number in the present study are based on this configuration.
For simulations at a much higher Reynolds number, which were performed at
a larger computational domain, a certain amount of dissipation was necessary
for stability. The dynamic eddy viscosity model yielded turbulent statistics
which displayed a nearly self-similar development.
A number of somewhat related DNS-LES studies have been reported in

literature. In ref. [4] the DNS calculations of [77] for the temporal mixing
layer were extended by examining the effect of domain size and initial condi-
tions using LES. It was concluded that the self-similar state of mixing layers
is not unique since, among others, the initial conditions and the size of the
domain have quite significant effects. These influence the shape of the coher-
ent eddies of the flow and their statistics. In ref. [40] self-similarity of the
temporal turbulent plane wake is considered using LES. Large-eddy simula-
tions employing the dynamic localization model from [39] were used to extend
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the computational domain of previous direct numerical simulations reported
in [66]. Like the wake experiments, the large-eddy simulations suggest that
non-unique self-similar states, characterized by different spreading rates and
turbulent statistics, are possible and that they can be maintained for signifi-
cant temporal periods. In ref. [21] a spatially developing incompressible mixing
layer is studied using LES with the filtered structure function subgrid-scale
model. The molecular viscosity is assumed to be zero. The pairing process is
investigated and it turned out that for the LES the same types of flow pat-
terns were obtained as in previous temporal DNS studies. Finally, we mention
that an a priori LES analysis of the DNS database acquired from Chapter 2
is reported in ref. [36].
This chapter is organized as follows. In Section 5.1 the equations and defi-

nitions needed for LES are given. Subsequently, the basic subgrid-models and
their dynamic formulations are introduced in Section 5.2. The specification
of the LES of the mixing layer is given in Section 5.3. Furthermore the eval-
uation of the filtered fine-grid DNS data used for reference is described. In
Section 5.4 the results of different subgrid-models are presented and discussed.
The sensitivity of these results with respect to changes in, e.g., resolution is
considered in Section 5.5. Finally, we give the conclusions in Section 5.6.

5.1 Governing equations

In large-eddy simulations, similarly as in the Reynolds-averaging procedure as
described in Chapter 4, any flow variable f is decomposed into a large-scale
contribution f and a small-scale contribution f ′ :

f = f + f ′.

The filtered field, f , is generated from the unfiltered field with the use of a
filter function G:

f(x) =
∫

Ω
G(x, ξ)f(ξ) dξ,

for vectors x and ξ in the flow domain Ω. Similarly, the Favre-filter is intro-
duced to simplify the notation for compressible flow:

f̃ =
ρf

ρ̄
,

giving rise to the decomposition f = f̃ + f ′′.
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The filter function has a filter width ∆ and is normalized such that∫
Ω
G(x, ξ) dξ = 1, (5.1)

for every x in Ω. A popular filter is the top-hat filter which is defined as follows:

G(x, ξ) =
{
1/∆3 if |xi − ξi| < ∆i/2,
0 otherwise.

(5.2)

The basic filtered flow variables are the filtered density ρ̄, the filtered pres-
sure p and the Favre filtered velocity vector ũ. The corresponding filtered
continuity, momentum and energy equations are obtained if the ‘bar’-filter is
applied to the Navier-Stokes equations [101]:

∂tρ̄+ ∂j(ρ̄ũj) = 0, (5.3)
∂t(ρ̄ũi) + ∂j(ρ̄ũiũj) + ∂ip − ∂jσ̆ij = −∂j(ρ̄τij) + ∂j(σij − σ̆ij)

(i = 1, 2, 3), (5.4)
∂tĕ+ ∂j((ĕ + p)ũj)− ∂j(σ̆ij ũi) + ∂j q̆j = −α1 − α2 − α3 + α4

+ α5 − α6, (5.5)

with

ρ̄τij = ρuiuj − ρuiρuj/ρ̄ = ρ̄(ũiuj − ũiũj),

σ̆ij = Sij(ũ)/Re,

ĕ =
p

γ − 1 +
1
2
ρ̄ũiũi,

q̆ = − 1
(γ − 1)RePrM2

∞
∂j T̃ ,

T̃ = γM2
∞
p

ρ̄
,

and α1 − α6 are further specified as follows [101]:

α1 = ũi∂j(ρ̄τij),
α2 = ∂j(puj − pũj)/(γ − 1),
α3 = p∂juj − p∂j ũj ,

α4 = σij∂jui − σij∂j ũi,

α5 = ∂j(σijũi − σ̆ijũi),
α6 = ∂j(qj − q̆j).

The turbulent stress tensor ρ̄τij is the only subgrid-term in incompressible
flow. Therefore we assume that also compressible LES at low Mach numbers
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mainly requires the modeling of ρ̄τij . This is supported by the temporal mixing
layer study [100]. It is clear from (5.4) that the subgrid-term ρ̄τij contains
information from the unfiltered field. A subgrid-model should be included for
the turbulent stress tensor ρ̄τij in order to express the filtered Navier-Stokes
equations solely in filtered variables.
Finally we note that up to this chapter, the bar notation implied averaging

over the homogeneous variables time and x3 (RaNS). In the remainder of this
thesis the bar-operator denotes the LES filter as introduced above, while the
(additional) averaging over time and x3 is now denoted by 〈·〉. In the next
section we present the subgrid-models that will be employed in this chapter.

5.2 Basic models and their dynamic realizations

The most important term in the closure of the filtered equations is the turbu-
lent stress tensor. In this section two basic models are presented for the turbu-
lent stress tensor ρ̄τij : the Smagorinsky [83] and the Bardina model [5]. The
former is an eddy viscosity model while the latter is based on a scale-similarity
assumption. Subsequently the Germano identity is formulated. This identity
leads to the dynamic eddy viscosity model and the dynamic mixed model. The
model for ρ̄τij will be denoted by mij.

5.2.1 The Smagorinsky model

The Smagorinsky model [83] is given by

mij = −ρ̄C2
S∆

2|Sij(ũ)|Sij(ũ),

where

|Sij(ũ)|2 =
1
2
Sij(ũ)Sij(ũ),

with Sij the strain rate defined in (2.5). It is a popular model because its
evaluation does not require extra filtering unlike many other models. It is
purely dissipative and provides an effective way of energy reduction at small
retained scales.
Following high Reynolds number temporal simulations for the temporal

mixing layer, the Smagorinsky constant CS is taken equal to 0.1. The model
was observed to be too dissipative and to hinder the transition to turbulence
when a higher value of 0.17 was taken [104]. This is commonly known and is
also experienced in the present study. A priori tests of the temporal mixing
layer and several other flows display a low correlation between the Smagorinsky
model and the actual turbulent stress [99].
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5.2.2 The Bardina model

The scale-similarity model was formulated by Bardina [5] and reviewed in [57].
The tensor mij is based on two subsequent applications of the bar-filter and
is defined as:

mij = ρuiρuj/ρ̄ − ρuiρuj/ρ.

This model involves the assumption that velocities from different filter levels
generate turbulent stresses with similar structures. The model for the turbu-
lent stress tensor equals the definition for ρ̄τij with the unfiltered variables ρ
and ρui replaced by their filtered equivalents ρ̄ and ρui. The model does pro-
vide global dissipation as well as backscatter of energy. In several studies a
high correlation is reported between the subgrid-stress of the Bardina model
and the exact turbulent stress [57, 99]. In many simulations this model was
found insufficiently dissipative and required an extra dissipative term.

5.2.3 The dynamic procedure

Several LES studies have shown that in particular the dissipative character of
both basic models introduced above is not appropriate being either too large
or too small. These short-comings are often removed by applying the dynamic
procedure which is introduced next. The Germano identity [38] for the tur-
bulent stress tensor forms the basis for so-called dynamic subgrid-models. It
involves a second test filter denoted by (·)̂ or (̂·) with a width usually equal
to 2 ∆. The identity states that

ρ̂Tij − ̂̄ρτij = Lij, (5.6)

with

ρ̂Tij = ρ̂uiuj − ρ̂uiρ̂uj/ρ̂, (5.7)

Lij = (ρuiρuj/ρ̄)̂ − ρ̂uiρ̂uj/ρ̂. (5.8)

The first term on the left-hand side of (5.6) is the turbulent stress tensor
appearing in the LES equations after subsequent application of the two filters.
The second tensor is the test-filtered turbulent stress tensor. The remaining
so-called ‘resolved’ term Lij on the right-hand side can explicitly be calculated
from the bar-filtered variables. The two dynamic models for the turbulent
stress tensor in the following are obtained by substituting the corresponding
basic models into the Germano identity and optimizing the coefficient.
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5.2.4 The dynamic eddy viscosity model

The dynamic eddy viscosity model [37, 38] is based on the formulation of
Smagorinsky’s model with C2

S replaced by a coefficient Cd. The tensor mij is
given by:

mij = −ρ̄Cd∆2|S(ũ)|Sij(ũ). (5.9)

The coefficient Cd is adjusted to the local structure of the flow in a dynamic
way. As a result, the eddy viscosity reduces in places where turbulence is not
very active. After substitution of the subgrid-model mij from (5.9) into the
Germano identity, this results in the following relation for Cd :

CdMij = Lij, (5.10)

with

Mij = −ρ̂(κ∆)2|S(v)|Sij(v) + (ρ̄∆2|S(ũ)|Sij(ũ))̂, (5.11)

vi = ρ̂ui/ρ̂, (5.12)

and Lij as defined in (5.8). Here, we assumed that Ĉdf ≈ Cdf̂ , i.e., variations
of Cd on the scale of the test-filter are assumed to be small. The value of κ
appearing in the filter width of the consecutive application of both filters is
taken equal to

√
5 as suggested in [104].

To calculate the model coefficient from equation (5.10) we apply an ad-
ditional averaging over homogeneous directions. For the optimal description
in a least squares sense [56], the ‘error’ is minimized with respect to Cd. This
results in:

Cd =

〈
MijLij

〉
x3〈

MijMij

〉
x3

. (5.13)

The symbol 〈·〉x3 denotes averaging over the spanwise domain which is the
only homogeneous direction in the spatial domain. The averaging over the
(periodic) streamwise direction as in the temporal setting is no longer per-
formed. The model coefficient Cd is artificially put to zero at locations where
the right-hand side of (5.13) results in a negative value. This clipping prevents
numerical instability caused by negative values of Cd [104].

5.2.5 The dynamic mixed model

The dynamic mixed model has been introduced in [109] and modified in [98]
in order to remove a mathematical inconsistency. It employs the sum of the
Bardina and Smagorinsky model as basic model:

mij = ρuiρuj/ρ̄ − ρuiρuj/ρ − ρ̄Cd∆2|S(ũ)|Sij(ũ). (5.14)
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This model gives a relatively accurate representation of the turbulent stress by
the similarity model while the lack of dissipation in this model is counteracted
by the introduction of a dynamic eddy viscosity [104]. After substitution of
the subgrid-model into the Germano identity, the following expression for Cd

can be found:

Hij + CdMij = Lij ,

with

Hij =
̂

ρ̂uiρ̂uj/ρ̂ − ̂̂
ρui

̂̂
ρuj/

̂̂
ρ −

(
ρuiρuj/ρ̄ − ρuiρuj/ρ

)̂,
and the tensors Lij and Mij defined in (5.8) and (5.11) respectively.
Again, Cd is computed using the least square approximation, combined

with averaging over homogeneous directions and if required clipping, i.e.:

Cd =

〈
Mij(Lij − Hij)

〉
x3〈

MijMij

〉
x3

.

In the rest of this chapter the subscript x3 is left out of the notation for the
average operator 〈·〉x3 . The operator 〈·〉 denotes spanwise averaging when
used in the expression of Cd and it implies averaging over time and spanwise
direction otherwise.

5.3 Description of the LES

In this section, we describe the LES and discuss some aspects that need special
attention for spatially developing shear flows. Several choices are based on
previous findings for the temporal mixing layer.

5.3.1 Specification of the reference large-eddy simulation

The filtered Navier-Stokes equations need a subgrid-model for the turbulent
stress tensor in order to close the system of equations. The subgrid-terms
created by nonlinearities in the viscous stress tensor are neglected and no
model is assumed for the subgrid-terms in the energy equation [100]. At the
inflow boundary, perturbations from Linear Stability Theory are imposed as
before. The inflow perturbations are filtered in normal and spanwise direction
to preserve theoretical consistency. It turned out that the streamwise filtering
was not necessary.
The LES is initiated from a filtered DNS field that corresponds to a well

developed turbulent flow. In this way, the effect of the different models on
the flow can be considered directly. In particular, the deviation between the
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LES solutions corresponding to different models can be assessed in detail as a
function of time. The filtered field to start the LES is acquired from the finest
DNS (900×192×64 points) using filter widths (∆1,∆2,∆3) = (6h1, 6h2, 8h3).
The grid size in xi-direction is denoted by hi. A resolution of 300 × 64 × 16
is employed for the LES. The filter width is taken equal to twice the grid-
spacing of the LES grid as suggested in [104]: ∆i = 2h

(LES)
i . As filter function

we employ the top-hat filter, already defined in (5.2). This filter operator
applied to a field f results in the following expression for f :

f(x) =
1
∆3

∫ 1
2∆3

− 1
2∆3

∫ 1
2∆2

− 1
2∆2

∫ 1
2∆1

− 1
2∆1

f(x+ y) dy.

It is discretized using the trapezoidal rule. For the filter width ∆ we take:

∆ = (∆1∆2∆3)1/3.

The LES is started from the filtered DNS field at time 552. From Chap-
ter 2 we know that the flow is fully developed by that time. The sampling for
time-averaged properties starts at time 935. This is based on findings from
Chapter 2 regarding the time for a signal to traverse the streamwise domain.
The suitability of this time to start time-averaging is illustrated further on in
Section 5.4.1. Unphysical effects which may have their origin in the initializa-
tion have disappeared at this stage of the flow development.

5.3.2 Filtering spatially developing DNS results

One of the steps in a systematic development of LES is the comparison with
results acquired from DNS. To this purpose we use the DNS database dis-
cussed in the previous chapters. During the DNS several quantities averaged
over time and x3 are calculated, among which 〈ρ〉, 〈ρui〉 and 〈p〉. In order to
compare with LES these quantities are filtered, which yields 〈ρ〉, 〈ρui〉 and 〈p〉.
It is important to note that the two operations commute. For example the
momentum thickness can be calculated from

θ(x1) =
∫ L2/2

−L2/2

〈
ρ̄
〉(

U1 −
〈
ρu1

〉
/
〈
ρ̄
〉)(〈

ρu1
〉
/
〈
ρ̄
〉

− U2

)
(U1 − U2)2

dx2,

and thus can be expressed in terms of the basic filtered flow variables. As
a result, the so-called filtered momentum thickness can be computed from
(x3, t)-averaged DNS results in a post-processing phase and furnish reference
data for comparison with LES.
This procedure, however, cannot be applied for the Reynolds stress tensor,

since it involves extra multiplication operators. In particular, during the DNS,
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e.g.,
〈
ρuiuj

〉
usually is calculated which can be filtered to produce

〈
ρuiuj

〉
,

while in an LES ρ̄ũiũj is computed which after averaging yields 〈ρ̄ũiũj〉. The
latter usually cannot be extracted from the DNS database. A solution to this
problem follows from the relation between filtered DNS and LES results:

〈ρuiuj〉 − 〈ρ̄τij〉 =
〈
ρ̄ũiũj

〉
,

which leads to:

R∗
ij −

〈
ρ̄τij

〉
= RLES

ij , (5.15)

with

R∗
ij = 〈ρuiuj〉 − 〈ρui〉 〈ρuj〉/〈ρ〉
=

〈
ρ̄ũiuj

〉
−

〈
ρ̄ũi

〉〈
ρ̄ũj

〉
/
〈
ρ̄
〉
, (5.16)

RLES
ij =

〈
ρ̄ũiũj

〉
−

〈
ρ̄ũi

〉〈
ρ̄ũj

〉
/
〈
ρ̄
〉
, (5.17)

〈ρ̄τij〉 = 〈ρ̄
(
ũiuj − ũiũj

)
〉. (5.18)

Note that R∗
ij is the Reynolds stress tensor based on ρ̄, ũ and ρuiuj instead of

ρ, u and ρuiuj . The term
〈
ρ̄τij

〉
usually is not monitored as part of the DNS. It

can, e.g., be estimated from a sufficiently large number of snapshots as shown
in the next section. This is relevant for the comparison between DNS and LES.
Further analysis is required regarding how higher order moment fluctuations
from the DNS should be obtained for comparison with LES. These arise for
example in the turbulence kinetic energy equation (3.3).
In order to compare the fine-grid DNS data with coarse-grid LES results,

the DNS data are first filtered using the fine-grid result and subsequently in-
jected onto the LES grid. This coarse field of basic filtered flow variables
may be used to compute, e.g., the spanwise vorticity or the momentum thick-
ness. Note that the issue raised in this subsection does not occur in temporal
simulations.

5.4 LES results

In this section we compare the results that arise from LES using the subgrid-
models introduced in Section 5.2. Also results of a coarse-grid simulation
in which no model is used, are included. This simulation corresponds to a
simulation on a coarse grid starting from a filtered initial field and with filtered
inflow perturbations. The filtered DNS results are included when available
and appropriate. In this section we first present some results that characterize
the instantaneous flow and help to assess the quality of specific models. We
continue with the assessment of LES results based on long time-averaging.



5.4. LES results 89

5.4.1 Comparison of instantaneous results

The description of instantaneous results is started with the spanwise vorticity
which has typical characteristics for each subgrid-model. We also illustrate
how the solutions corresponding to different models develop in time. It is
emphasized that one should be careful in comparing instantaneous LES pre-
dictions because the difference of two signals can appear large while, e.g.,
mainly a phase difference is present.
In Figure 5.1 we collected the spanwise vorticity in a characteristic span-

wise plane as well as in the centerplane for several subgrid-models. Also the
filtered DNS results of Chapter 2 are included. The results of the dynamic
mixed model are not included since they show similar structures as the dy-
namic eddy viscosity model. In the first part of the streamwise domain the
Bardina model predictions are close to those of the dynamic mixed model
and the filtered DNS. Beyond one third of the streamwise domain the con-
tour lines in the centerplane display strong gradients when using no model or
the Bardina model. The empty spaces in the filtered DNS solution that arise
when the vortex tubes are above respectively below the centerplane can also
be distinguished for the dynamic models. The dynamic eddy viscosity model
is close to the no model simulation which can be explained by the fact that
the dynamic coefficient is often clipped to zero. Compared to the temporal
large-eddy simulation [104], the grid distance in the present study is a factor
two finer in each direction. Also the Smagorinsky constant of 0.17 is reduced
to 0.1. This results in a reduction of the excessive dissipation that is typical
for this model. These two aspects explain why the present results do not show
as clear a distinction between the Smagorinsky, Bardina and dynamic models
as was found in the temporal study reported in [104].
Due to the dominant mean boundary layer profile, the filtered spanwise

vorticity, ω3, in the laminar part of the mixing layer is negative. As a result,
the occurrence of positive spanwise vorticity in the mixing layer is related to
the transition to turbulence [104]. Therefore we focus on the level of positive
spanwise vorticity. In Figure 5.2 we show the time-averaged maximum values
of the spanwise vorticity as a function of the streamwise coordinate. The max-
imum is taken over the x3 and part of the x2 domain where the 〈ρu1〉 value
deviates more than two percent from both free-stream values. For all mod-
els, this quantity is obtained from about forty snapshots and is subsequently
averaged.
In Figure 5.2, the negative values of the time-averaged maximum span-

wise vorticity just after the inflow display the laminar character of the flow
there. Downstream of x1 = 170, the filtered DNS result is overestimated by
the Bardina- and no-model simulations while it is underestimated in the sim-
ulations using the other subgrid-models. More quantitatively, the deviation
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Figure 5.1: Filtered spanwise vorticity, ωx3 , at time 935. The contour lines
display negative (—) and positive (· · ·) values for ±(0.03, 0.06, . . . , 0.21) in the
spanwise plane at x3 = −L3/4 (top four plots) followed by the centerplane at x2 =
0 (bottom four plots). All plots have x1 as the horizontal axis. They display the
results of (in top-down order) the Smagorinsky, Bardina, dynamic eddy viscosity
and filtered DNS.
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Figure 5.2: Time-averaged maximum value of filtered spanwise vorticity, 〈ω3〉t,
as a function of x1. The models used are Smagorinsky (✷), Bardina (×), dynamic
eddy viscosity (−−), dynamic mixed (−·). Also the no-model (—) and filtered
DNS (o) results are included.

with the filtered DNS result - on average - is smallest for the dynamic eddy
viscosity model and largest for the no-model result in the second part of the
domain.
These findings will next be compared with those of the temporal study

(see Figure 9 in [104]). The main difference with the present results is the
low maximum spanwise vorticity level for the Smagorinsky model throughout
the whole time (or, for the present setting, streamwise) domain. This can be
explained from the higher value for the Smagorinsky constant in the tempo-
ral simulation. Furthermore, the deviation between the present filtered DNS
and LES values is smaller for all models because of the finer LES grid. The
moment in time in the temporal study around which the maximum spanwise
vorticity of the filtered DNS becomes larger than that of the dynamic models
equals about t = 55. This is in close correspondence with the streamwise loca-
tion of x1 = 170 mentioned above when using the convective velocity of 0.75
and the factor of four between the velocity differences of both settings (see
relation (2.16)). Finally we mention that downstream of x1 = 200 also the
spanwise vorticity minimum for the filtered DNS is in between the (lower)
no-model and Bardina predictions and the remaining models. So, we conclude
that the extreme values of the spanwise vorticity from the filtered DNS are
overestimated by the Bardina and no-model simulations and underestimated
by those of the Smagorinsky and both dynamic models.
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From the instantaneous snapshots we move to the time history of the
centerplane streamwise momentum density. At a laminar streamwise loca-
tion (x1 = 98) the signals fluctuate with an amplitude which is largest for
the Bardina model. A clear distinction exists between the Smagorinsky signal
statistics and those of the other subgrid-models. The Smagorinsky value of
the fluctuation amplitude is a factor of two smaller than the equivalent for
the Bardina model. The time histories of the signal in the turbulent regime
are shown in Figure 5.3. All models display a rapidly oscillating behaviour
in time alternated with a slowly oscillating behaviour. Downstream of the
laminar region the fluctuations in the Smagorinsky model have reached ap-
proximately the same level as those from other models. The root mean square
value for the Smagorinsky signal is smallest and is about 25% lower than that
of the Bardina and no-model result. The streamwise momentum density in
the turbulent regime is seen not to result in a clear distinction between the
performance of either subgrid-model.

600 800 1000 1200 1400 1600 1800 2000 2200 2400
0.6

0.8

time

Figure 5.3: Centerplane ρu1 signal at x3 = −L3/4 for x1=250 as a function
of time. The models used are (in top-down order) the Smagorinsky, Bardina,
dynamic eddy viscosity, dynamic mixed and the no-model result.
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Figure 5.4: Centerplane value (x2 = −3) of Cd as a function of x1 for the dynamic
eddy viscosity model (—), dynamic mixed model (−·) and the value of C2

S for the
Smagorinsky model (−−) at time t = 935.

In order to further explore the differences in the models, we next discuss
the streamwise momentum flux. It can be split in a convective, viscous and
subgrid contribution. The convective flux is by far the largest. For all models
the convective flux is at least a factor of forty larger than the viscous and
subgrid fluxes. The latter two are roughly comparable in size at the present
Reynolds number. The viscous flux for the Bardina model and the case without
model is about a factor of two larger than that of the other models. This can
be explained from the fact that the subgrid dissipation is smaller. As a result,
more small structures are present. Also the convective fluxes of these two
models are about thirty percent larger than those of the other models. This
is also reflected in Figure 5.3 since the largest amplitude of fluctuations of
the streamwise momentum density signal was reported for the no-model and
Bardina model.

5.4.2 Features of subgrid-models

Up to now we have compared the instantaneous flow for some subgrid-models
considering several quantities like the spanwise vorticity and the streamwise
momentum density. In this subsection we show the dynamic behaviour of the
eddy viscosity model and the energy transfer in the non-eddy viscosity models
by considering the forward and backscatter.
We start with the eddy viscosity coefficient. In the dynamic models, this

coefficient depends on the local turbulent structure of the flow. In Figure 5.4
we display the instantaneous value of the coefficient close to the centerplane
for both dynamic models while it is generally too low further downstream.
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The buffer area is behind the dotted line. Both values of Cd globally increase
in streamwise direction which indicates that the flow becomes more turbulent.
We also mention that in the first quarter of the domain the Smagorinsky value
of C2

S = 0.01 is larger than the dynamic coefficient of both dynamic models
while it is generally too low further downstream.
Next we focus on the dynamic coefficient in relation to the artificial way

to keep it non-negative. In the first half of the domain the dynamic eddy
viscosity model contribution is clipped twice as often as in the second half.
This difference is even larger for the dynamic mixed model. We also observed
a low correlation between the solutions of the dynamic eddy viscosity model
and the Smagorinsky model and a high correlation between the dynamic eddy
viscosity model and no-model solutions. In contrast with the temporal mixing
layer simulation, the dynamic coefficient is averaged over the homogeneous
spanwise direction only. This explains why its behaviour is less smooth in the
spatial setting. This behaviour of the dynamic coefficient may be improved by
an additional averaging over time which is somewhat comparable to averaging
over the streamwise direction in the temporal setting. We return to this in
the next chapter.
Next, we consider the two non eddy viscosity models used here: the Bar-

dina model and dynamic mixed model. We focus on the production term of
the turbulence kinetic energy equation:

P = −ρ̄τij ∂j ũi.

It represents the rate at which kinetic energy is transferred between the mean
flow and the small scales. It corresponds with the expression from equa-
tion (3.3) of the RaNS setting with the exception that the bar-filter here
denotes spatial filtering. For the RaNS setting of the previous chapter we
found that in a local sense as well as after integration in the normal direction,
the production had the largest contribution in the turbulence kinetic energy
equation.
Following refs. [69, 99], the production term is decomposed into two parts

P = P+ + P−, with:

P+ = (P + |P |)/2 ≥ 0, (forward scatter),
P− = (P − |P |)/2 ≤ 0, (backscatter).

In regions of the flow where P (and P+) is positive, energy flows from the
resolved scales to subgrid scales and the amount of turbulence kinetic energy
is increased which results in higher levels of turbulence. Contrary, negative
values of P (and P−) imply a transfer of energy in reverse direction and corre-
spond to a decrease of turbulence kinetic energy. If the turbulent stress tensor
ρ̄τij is modeled by an eddy viscosity model, the production cannot be negative.
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So, the Smagorinsky and dynamic eddy viscosity model only generate forward
scatter.
In Figure 5.5 we show the back- and forward scatter for the Bardina and

dynamic mixed model at t = 935 as a function of x1 and averaged over x2
and x3. Both models display considerable forward scatter which on average is
about a factor five respectively twelve larger than the amount of backscatter.
We observe that both models exhibit backscatter everywhere up to x1 = 150.
Further downstream, in particular for the dynamic mixed case, several regions
exist with almost zero backscatter. Upstream of x1 = 100 the amount of
forward scatter is a factor two to three smaller than downstream. The lower
amount of backscatter and to a lesser extent the higher amount of forward
scatter imply that further downstream more smaller scales arise. The Bardina
model is seen to generate more backscatter than the dynamic mixed model.
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Figure 5.5: Plots of P = −ρ̄τij ∂jũi at t = 935 as a function of x1 and averaged
over x2 and x3. The amounts of backscatter |P−| = −P− (—) and forward scatter
|P+| = P+ (−−) are shown for the Bardina (a) and dynamic mixed model (b).
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Finally we focus on the production of the Bardina model. We are inter-
ested in a possible correlation between locations of back- and forward scatter,
i.e., negative and positive production respectively, in relation to the span-
wise vorticity. In Figure 5.6 the contour plot of P = −ρ̄τij∂j ũi at t = 935
is shown. Regions of backward- and forward scatter form a regular pattern
in the laminar region up to x1=110. The white regions (backscatter) remain
about the same size while the dark areas (forward scatter) globally become
wider in downstream direction. Furthermore we observe that the first half of
the streamwise domain contains much larger regions of backscatter than the
second half. The dark regions globally coincide with negative peaks of the
spanwise vorticity. This agrees with results of the study from [42] on homo-
geneous isotropic turbulence. In this work, the coherent vortical structures
that are responsible for the energy transfer between the grid scale and the
subgrid scales are classified. Events associated with backscatter occur along
‘compressed vortex tubes’ cf. [42]. The equivalent structures in the present
mixing layer configuration appear to be the negative vortex rollers. In the
next section we consider results based on long-time statistics to complement
the instantaneous flow results discussed until now.

5.4.3 Comparison of mean and fluctuating LES predictions

Up to now we have compared the instantaneous behaviour of the subgrid-
models. Here we consider results from long time-sampling. All statistical
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Figure 5.6: Contour plot of P = −ρ̄τij∂j ũi at t = 935 for values P = 0.000025
(dark spots; forward scatter) and P = −0.000025 (white spots; backscatter)
for x3 = −L3/2. We have x1 as the horizontal and x2 as the vertical axis.
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averaging is based on results from the time interval [935, 3231]. After t = 935,
extra effects, that may be present as a result of initiating the LES from a
filtered turbulent DNS field, appear to have disappeared. We start with the
momentum thickness. In Figure 5.7 we collected the momentum thickness
predictions of the different subgrid-models. A short distance behind the in-
flow boundary, the results of all subgrid-models display an increase in the
growth rate around x1 = 100 which is indicative of transition. The values for
the growth rates approximately remain roughly unchanged in the rest of the
streamwise domain. The largest deviation between the momentum thicknesses
is about 30%. The deviation between the resulting growth rates is within 20%.
Similar as for the spanwise vorticity, the differences among the momentum
thicknesses of all subgrid-models is small compared to the deviations in the
coarse-grid temporal study. This can be explained by the better resolution
in the present setting. The momentum thickness is largest for the filtered
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Figure 5.7: Momentum thicknesses θ as a function of x1 and based on time=935-
3231. The models used are Smagorinsky (✷), Bardina (×), dynamic eddy viscos-
ity (−−), dynamic mixed (−·). Also the no-model (—) and filtered DNS (o)
results are included.
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DNS result, followed by that of the Bardina and dynamic mixed model. The
no-model and dynamic eddy viscosity results coincide for small values of x1
and split further downstream where the no-model result grows slightly faster.
The growth rate of the Smagorinsky model is lowest, but closer to that of the
others than in the temporal setting, due to the lower Smagorinsky constant
adopted here.
We next consider the profiles of the time-averaged streamwise momentum

density 〈ρu1〉. As can be seen in Figure 5.8.a, the lines more or less coincide
around the centerplane. However, the values near the ‘edges’, i.e., around
x2 = −8 and 6, are different for each subgrid-model. If the normal coordinate
in Figure 5.8.a is scaled with the predicted local momentum thickness, all
lines nearly coincide with data taken from the second half of the domain.
This scaling of the normal coordinate is also necessary in order to consider
self-similarity in the averaged streamwise momentum density profiles of all
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Figure 5.8: Time-averaged streamwise momentum density 〈ρu1〉 at x1 = 279
as a function of x2 (a). The models used are Smagorinsky (✷), Bardina (×),
dynamic eddy viscosity (−−), dynamic mixed (−·). Also the no-model (—) and
filtered DNS (o) results are included. In (b), it is displayed at x1 values 148(—),
192(−−), 235(−·) and 279(· · ·) as a function of x2/θ(x1) for all four LES models.
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four subgrid-models. In Figure 5.8.b we collected the resulting profiles of all
subgrid-models at four locations in the second half of the streamwise domain.
Considered for each model separately, the deviation between the profiles at
four different streamwise locations is within 3%. So, within this accuracy, all
models predict self-similarity of the averaged streamwise momentum density
consistent with the DNS results in Chapter 2. Similarly as in Figure 5.8.a,
the values of the slope around the centerplane are close to each other. The
largest deviations again take place at the ‘edges’ of the mixing layer. Even
when we also incorporate the no-model and filtered DNS results, the deviations
between all profiles are within 4%. Hence 〈ρu1〉 does not depend sensitively
on simulation details such as the subgrid-model. The self-similar behaviour of
〈ρu1〉 is evident from these simulations and at this level of accuracy.
Next, we turn to the Reynolds stress profiles that in Chapter 2 turned out

to be rather sensitive regarding resolution, length of time-averaging and type of
inflow perturbations. In Figure 5.9 we collect the three turbulence intensities
R

1/2
ii (i = 1, 2, 3) and the Reynolds stress R12 based on definition (5.17).
The filtered DNS result (5.16) is also included. It should be stressed here that
〈ρ̄τij〉 from (5.15) is not included in the LES predictions of the Reynolds stress.
This term usually is not contained in either a DNS or the LES database. We
consider this issue momentarily.
The difference between the profiles of all subgrid-models is smallest for the

R12 component, followed by R11. For R11 and R12, the filtered DNS profile
bends slightly down to the low-speed side, i.e., the profile has its peak at
x2 < 0. This behaviour is not clearly observed in the LES results. The results
for R22 vary more and the filtered DNS result is overestimated by all LES
predictions. For R33 the filtered DNS result is underestimated by all LES
predictions. Also the widths of these profiles vary. This could be improved
by plotting R33 as a function of x2/θ(x1) instead of x2, but the widths of for
example the R22 profiles would then no longer coincide. The relatively large
deviations in the peak values of the LES results for R33 may decrease when we
remove the physical constraint of a narrow spanwise domain, i.e., no longer
restrict to the ‘minimal mixing layer’. This is further explored in Chapter 6.
The Smagorinsky and dynamic eddy viscosity Reynolds stress tensors are

close to each other except for the streamwise turbulence intensity where the
peak of the dynamic eddy viscosity model prediction approaches the higher
filtered DNS result. The Reynolds stress tensor of the no-model setting is
almost always larger than the predictions of the other models. To a lesser
degree this can also be concluded for the Bardina and dynamic mixed model
results for the Reynolds stress tensor which is indicative of the amount of
small scales in the LES predicted flow. The Smagorinsky results which almost
always are lowest show this model’s too dissipative character.
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Figure 5.9: Components of the turbulence intensities R1/2
ii (i=1-3;a-c) and Rey-

nolds stress R12 (d) at x1=279 as a function of the normal coordinate x2. The
models used are Smagorinsky (✷), Bardina (×), dynamic eddy viscosity (−−),
dynamic mixed (−·). Also the no-model (—) and filtered DNS (o) results are
included.

Finally we return to the issue of the term 〈ρ̄τij〉 (see (5.18)) that should
be added to the LES Reynolds stress components in order to compare them
with the filtered DNS values. This term will be estimated using about forty
snapshots of ρ̄τij from the DNS data. An alternative is to employ a model ap-
proximation, 〈mij〉, which is sampled during the LES. We choose the Bardina
value of 〈mij〉 [104]. It turns out that the streamwise developments of 〈ρ̄τij〉,
based on several snapshots, and 〈mij〉 give about equal peak values. These
should be added to the LES predictions of Rij . The change in the prediction
of the Reynolds stress tensor is next discussed for each component separately.
The sign of 〈ρ̄τij〉 (and 〈mij〉) is equal to the sign of Rij for all components.
From one third of the domain onward, the maximum value of tensor
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〈ρ̄τij〉 (and 〈mij〉) saturates for all components. We focus on the situation
at the streamwise location used in Figure 5.9 (x1 = 279). The first component
suggests that the maximum filtered DNS value of R11 should be decreased by
8%. So, the no-model result gets even worse while the others come closer to
the filtered DNS profile. Likewise, an amount of 5% should be subtracted from
the peak value of R22, so all model predictions get somewhat worse. For the
third component, R33, all LES predictions of the peak value are improved by a
decrease of 12% for the filtered DNS. Finally, 12% should be added to the peak
value of the filtered DNS prediction of the Reynolds stress R12, which improves
all models except the no-model and dynamic mixed model. It is concluded
that the main findings from the Reynolds stress tensor are not influenced by
the inclusion of this extra 〈ρ̄τij〉 term.

Throughout this section we have encountered and discussed several quan-
tities. The results for the four subgrid-models are summarized in Table 5.1.
The quality of LES is determined by comparison with filtered DNS results. A
subgrid-model is assessed relative to the no-model performance. The table is
next discussed and compared against a similar table based on the temporal
results. First we remark that the distinction in performance of the models
is smaller for the present results. This can be attributed to the higher res-
olution. The similarity basis of the Bardina model - compared to the other
subgrid-models - predicts an improvement of the modeled subgrid stress when
the resolution is increased. This explains the better performance of the Bar-
dina model for the present setting compared to [104]. The dynamic mixed
model is better than the dynamic eddy viscosity model. The improvement in
the LES using the dynamic models is smaller compared to the temporal study.

Figure S B D M
vorticity in a plane 5.1 0 0 + +
maximum vorticity 5.2 0 0 + 0
momentum thickness 5.7 − + − +
R11 5.9.a 0 0 0 0
R22 5.9.b + + + +
R33 5.9.c − 0 − −
R12 5.9.d − 0 − −

Table 5.1: Summary of the results from the Smagorinsky (S), Bardina (B), dy-
namic eddy viscosity (D) and dynamic mixed (M) setting. The symbols −, 0 and
+ refer to bad, reasonable and good results, respectively.
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This may be related to the narrow spanwise domain that confines the present
setting and the higher resolution, which makes this LES comparison less de-
manding than in [104]. The better performance of the present Smagorinsky
model can be attributed to the lower value for the Smagorinsky constant. This
reduces the model’s excessive dissipation. In the next section we consider the
influence of the numerical method on LES predictions. We mainly focus on
resolution effects.

5.5 Implementation sensitivity

The LES results that were shown and discussed in the previous section were
based on the choices of the resolution and the inflow and initial conditions
described in Section 5.3.1. In this section we vary some of these parameters
to consider the sensitivity of the predictions. The main motivation behind
LES involves its application in complex flows. In practice, the complexity of
the mixing layer that can be considered is limited by the resolution of the
numerical simulation. Thus, the main aim of this section is to determine a
‘minimal’ resolution that is required for a numerical simulation to still contain
the typical features of a mixing layer. These features are, e.g., the momentum
thickness and Reynolds stress tensor.
In this section we describe results of large-eddy simulations where we take

only half the number of points in each direction: (N1,N2,N3) = (150, 32, 8).
These simulations are about a factor of ten faster. A decrease of the resolu-
tion has numerous effects. Several of these effects simultaneously involve the
boundaries of the computational domain.
First we focus on numerical effects that have an origin at the outflow

boundary. Based on the DNS findings at three different resolutions (see Fig-
ure 2.7.b), the momentum thickness is considered as a very stable quantity
regarding changes in resolution. For the present lower LES resolution, small
fluctuations are visible in the momentum thickness close to the inflow bound-
ary. A striking improvement is observed when taking N1 = 180 instead of 150.
These fluctuations also are reduced when the buffer length is doubled, while
the mesh size is retained. When the streamwise mesh size h1 is too large, the
damping function changes too abruptly. Hence, fluctuations are reflected and
become visible, e.g., near the inflow area. We remark that this phenomenon
was also found for a DNS at the same resolution. When the number of stream-
wise points is further increased from N1 =180 to 300, hardly no difference is
visible. Therefore, in the rest of this section the ‘low resolution’ refers to
(N1,N2,N3) = (180, 32, 8).
When the resolution increases in all directions and also the filter width

gets proportionally smaller, the filtered value should approach the unfiltered
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value. However, for a low resolution a difference is clearly present, especially
around the inflow boundary where the mixing layer is rather thin. At the
inflow boundary, a very small number of points in x2-direction covers the mean
streamwise velocity profile. The slope of this profile changes after filtering. At
the first point after the inflow boundary the filtered equations are solved. In
order to retain the consistency of the system that is solved, the perturbations
imposed at the inflow have been filtered over x2 and x3 as well.
The difference between LES results that employ filtered or unfiltered initial

field and inflow perturbations is clearly visible in the dynamic coefficient.
However, when the variables are not filtered at the inflow boundary, there
is a strong increase in the dynamic coefficient of the dynamic mixed model.
This behaviour is no longer present when filtering over x2 and x3. Especially,
in x2-direction the perturbation profiles are narrow and therefore it appears
that the main difference can be attributed to the filtering in x2-direction. On
the other hand, the dynamic coefficient for the dynamic eddy viscosity model
does not depend much on whether the perturbations are filtered or not. It is
unclear why filtering the imposed inflow variables has a much larger effect for
the dynamic mixed model than for the dynamic eddy viscosity model.
Finally, we discuss the effect of filtering the inflow and initial conditions

on the momentum thickness. The difference between filtered and unfiltered
fields becomes larger for a coarser resolution. In Figure 5.10 we have collected
momentum thicknesses of LES using the dynamic eddy viscosity model that
employed both filtered and unfiltered initial and inflow conditions. The LES
is performed at the high resolution of Section 5.4 with N1 = 300. Both LES
results in Figure 5.10 display an equal growth rate. However, the ‘filtered
inflow’ result needs a somewhat longer streamwise distance after the inflow to
develop a linear growth. Also both the filtered and unfiltered DNS results are
included. Filtering the DNS results only has a clear effect around the inflow
boundary. We note that at the inflow boundary the results of the DNS and
LES employing unfiltered conditions coincide. Also their filtered equivalents
are close to each other.
Also other effects appear when a coarser grid is employed. We describe

and study some characteristics. The Bardina LES becomes unstable around
t = 3000. We recall that the feasibility of simulations of realistic mixing layers
is the final goal of this study. These simulations involve a higher Reynolds
number than used here and the Bardina LES may become unstable, even
when a smaller mesh size is used. For all models, similarly as in the temporal
study, the behaviour around the peaks of the Reynolds stress tensor profiles
is no longer smooth. The Smagorinsky profile is a factor two to three lower
than the one from the dynamic eddy viscosity model which in turn almost
coincides with the no-model result. The peak of the R33 LES profile of the
Bardina result is only 20% of the filtered DNS level and even 10% for the
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Figure 5.10: Momentum thicknesses θ as a function of x1 and based on the fine-
resolution LES results with time=765-3231. The dynamic eddy viscosity results
for unfiltered (—) and filtered (−−) inflow and initial conditions and the fine-
resolution filtered (−·) and unfiltered (· · ·) DNS results are plotted as a function
of x1.

other models. So, the fluctuations of the spanwise velocity are small in the
coarse-grid LES. The spreading in the LES results for all components of the
Reynolds stress tensor is large compared to the previous section.
We recall that the peak level of R33 for the high-resolution LES is lower

than that of the DNS. It is observed that the peak value of R33 from the
coarser LES is even lower. In contrast, the R33 results of the temporal setting
with a wider domain do not display larger deviations between the LES and
filtered DNS than of the other components. In the next chapter we observe
that the present underprediction of spanwise turbulence intensity is indeed
improved by enlarging the spanwise extent. This establishes that not only the
resolution but also the ‘geometric parameters’, which define the simulation
domain, can have a large influence on the results.
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5.6 Conclusions

The main theme of this chapter was the selection of an appropriate configu-
ration, i.e., subgrid-model and resolution. In general, it can be inferred that
no unambiguous distinction can be made regarding the quality of the subgrid-
models studied here. On the other hand, the lower resolution simulations
resulted in various simultaneous effects that also involved the inflow and out-
flow boundary of the domain. As a result, it is not completely clear whether
the distinctions in the LES results have a numerical origin in the sense of
the resolution being too low or whether they account for differences in the
subgrid-models.
Several Smagorinsky predictions like the spanwise vorticity, streamwise

momentum density and most components of the Reynolds stress tensor display
the presence of too much dissipation, despite the low Smagorinsky constant
of 0.1. However, the Smagorinsky results for the maximum spanwise vorticity
and some Reynolds stress tensor components are close to those of the dynamic
eddy viscosity model. Both the Bardina and no-model result contain an ex-
cessive amount of small scales. This results in an overprediction of several
quantities like the spanwise vorticity and root mean square of the streamwise
momentum density. The subgrid dissipation was either not present or insuffi-
cient and resulted in a larger amount of small scales. The deviations between
the present filtered DNS and no-model result are larger than the other model
predictions for several quantities like the spanwise vorticity and normal tur-
bulence intensity. The incorporation of a subgrid-model generally improves
the results. The Bardina model performs best for several statistical quanti-
ties like the momentum thickness and Reynolds stress tensor. However, the
low-resolution LES became unstable. Previously, LES is introduced for the
simulation of complex mixing layers with high Reynolds number and at low
resolution. We therefore do not select the Bardina model.
The two models that remain as candidates for the feasibility study in a

more realistic setting both employ the dynamic procedure. Although for some
quantities the results of the dynamic mixed and eddy viscosity model can
be distinguished, the overall performance of both models is about the same.
Based on simulation results of the temporal mixing layer at low as well as high
Reynolds numbers [104], and the fact that the dynamic eddy viscosity model
is computationally much less expensive, we propose to use the dynamic eddy
viscosity model in Chapter 6.
In the next chapter, large-eddy simulations are performed of more realistic

mixing layers. This involves simulations in a larger stream- and spanwise
domain, as well as at a higher Reynolds number. There are some reasons to
assume that in particular the narrow domain constraint used up to now has
been a restrictive factor in the simulations. This is primarily based on results



106 5. Assessment of LES for the spatial mixing layer

for the Reynolds stress tensor. We expect an increase in the level of spanwise
fluctuations when the spanwise domain is enlarged. This will be one of the
topics explored in the next chapter.



Chapter 6

Towards LES of realistic
mixing layers

In this chapter we consider large-eddy simulations of realistic mixing layers.
Compared to DNS, LES should be able to simulate flows in a larger domain
and at a substantially higher Reynolds number at the same computational
cost. The main topic of this chapter is to investigate this. We start with con-
sidering a wider and longer computational domain. Next the effects of a higher
Reynolds number are investigated, in particular the effects on the momentum
thickness, Reynolds stress tensor, dynamic coefficient and vorticity. Finally a
variant of the dynamic eddy viscosity model for the spatial simulation of sta-
tistically stationary flows is tested. It employs time-averaging of the dynamic
coefficient and may no longer need the presence of a homogeneous direction
in space.
We also study the issues of self-similarity and three-dimensionality. The

common opinion is that turbulent mixing layers display self-similar behaviour,
provided the Reynolds number is high, the computational domain is large and
the simulation is sampled long enough in time. For the minimal mixing layer
setting employed up to now we found that the momentum thickness grows
linearly in downstream direction for quite some streamwise distance. Also
the deviations in the profiles of averaged streamwise velocity as a function
of the normalized normal coordinate are within one percent. Finally it was
found that only the streamwise turbulence intensity clearly displays signs of
self-similarity in the final part of the streamwise domain. So, a key question
in this chapter is whether self-similarity comes into the system more clearly
when the computational domain is enlarged. In the study described in [21], a
larger amount of three-dimensional structures is observed when the spanwise
domain length is enlarged. So, it is interesting to consider whether more three-
dimensionality comes into the simulation when the constraint of a narrow

107
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spanwise domain is removed.
We next review some numerical results from literature on mixing layers

at different Reynolds numbers and with different sizes of the computational
domain. In [4] and [21] it is found that the growth rate of a temporal and
spatial mixing layer increases if a larger spanwise domain is used. A larger
streamwise domain hardly affects the growth rate. Also the Reynolds stress
tensor was influenced by the wider domain. In the temporal mixing layer study
from [104] the computational domain was also doubled in all directions, the
Reynolds number was increased by a factor of ten and uniform noise instead of
LST perturbations was added to the mean flow in order to provide the initial
condition. The combination of these changes resulted in a reduction in growth
rate of thirty percent. It is not clear to which particular item this reduction
can be attributed.
The main theme of this thesis is the feasibility of numerical simulation

of a realistic turbulent mixing layer. In practical applications not only the
domain is large, but also the Reynolds number. This leads to more small-
scale structures and hence affects the necessary resolution of the simulation.
In Chapter 5 it was argued that the dynamic eddy viscosity model is well
suited for the purpose of the present chapter. The main idea of this model
is based on a dynamic coefficient that locally adapts to the state of the
flow. In the final part of this chapter, we focus on this dynamic coeffi-
cient. In temporal simulations the dynamic coefficient is constant in ho-
mogeneous directions, e.g., the streamwise and spanwise direction for the
mixing layer. Up to now, we used a time-dependent dynamic coefficient.
In Chapter 5 it was shown that this results in a highly fluctuating coeffi-
cient in streamwise direction. We therefore study a variant of the dynamic
eddy viscosity model where the dynamic coefficient is no longer determined
locally (with respect to time and space) but instead is also averaged over
time.
This chapter is organized as follows. In Section 6.1 we give a specification of

the simulations used in this chapter. Each time we subsequently employ a new
setting, we show results that change significantly with respect to the ‘previous’
case, gradually building up the complexity of the simulations. Results that
typically change when LES is performed on a wider and longer domain are
shown in Section 6.2. Next, in Section 6.3, results are shown that change
significantly when the LES is performed at a higher Reynolds number. This
is followed by Section 6.4 where we focus on the behaviour of the dynamic
coefficient. Based on this, the adapted subgrid-model introduced above is
formulated. The results are evaluated and discussed. Finally we give the
conclusions in Section 6.5. The study described in this thesis is completed
with Section 6.6 in which a number of recommendations for future research
are pointed out.
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6.1 Specification of the large-eddy simulations

In this section we describe the choices that were made concerning all simula-
tions that are discussed in this chapter. The simulations are performed using
spanwise symmetry. As a first step in exploring the effect of the constraints in-
troduced before, we increase the extension of the spanwise domain. Before, we
had L3 = λF and here we take L3 = 5 λF . Further studies with other spanwise
lengths should be done in order to investigate the specific influence of taking
L3 = 5 λF instead of, e.g., four or six times the fundamental wavelength.
Up to now, we only used spanwise perturbation modes with spanwise wave-

lengths equal to λF . For the extended spanwise domain, also modes with larger
spanwise wavelengths should be included in order to stimulate the spanwise
interaction of structures. Four extra 3D modes are employed with spanwise
wavelengths equal to 5/3 λF and 5 λF respectively. Following [104], we select
globally the same wavelengths for the streamwise modes. The correspond-
ing streamwise wavelengths are taken as 2 λF and 4 λF . So, the streamwise
wavelengths all coincide with those of the three 2D modes: the fundamental
with wavelength λF , first subharmonic with λS1 and the second subharmonic
with λS2. This choice is based on the idea that these multiple wavelengths
stimulate subsequent pairings of the two-dimensional rollers. As a result, also
the temporal period of all perturbations is a multiple of TF . The resulting thir-
teen modes have relative amplitudes 0.03 and 0.091 for the three 2D modes
and ten 3D modes respectively. All relative amplitudes together add up to
one and the absolute amplitude ε is taken as 0.2 (see Section 2.2.1).
The specifications of the LESs that we study in this chapter are given in

Table 6.1. For convenience we introduce the following notation:

S : small domain and Reynolds number (see Chapter 5)

W : wider domain

WL : wider and longer domain

WLR : wider and longer domain as well as a higher Reynolds number

WCm : wider domain and time-averaged Cd

From top to bottom, each next situation involves the removal of one constraint
with respect to the former case. The grid spacings in all three directions and
for all settings are between 0.8 and 1.0. The filter width equals twice the grid
size in all three directions for all situations. New modes were derived from
linear stability theory for WLR which employs a ten times higher Reynolds
number. Accordingly, also the spanwise domain length and spanwise grid size
change slightly. The buffer length for the longer streamwise domain is taken
equal to 4 λF . This corresponds to the recommendation that the buffer length
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setting N1 N2 N3 L1 L2 L3 Re

S 300 64 16 290 60 16.07=λF 200
W (Cm) 300 128 80 290 120 80.33=5 λF 200
WL 640 128 80 515 120 80.33=5 λF 200
WLR 640 128 80 515 120 76.35=5 λF 2000

Table 6.1: Specifications of resolution, domain dimensions and Reynolds numbers
for settings S, W, WCm, WL and WLR.

Xe1 Xe2 Xe3 Xe4 Xe5 Xe6

52 126 201 275 350 425

Table 6.2: Streamwise locations at which the time history of several flow variables
has been recorded.

should be approximately 10% of the streamwise extent [105].
In the previous chapter, the LES started from a turbulent DNS field which

was filtered in order to avoid inconsistencies. Throughout the entire LES,
also the inflow perturbations were filtered for the same reason. In the present
chapter, the initial condition of the LES is the laminar solution to the bound-
ary layer equations. This also allows to study whether and how turbulence
arises in the LES. The initial and inflow fields used for the LES are no longer
filtered. The inflow location xi, at which the streamwise computational do-
main starts, is taken equal to ten times the value used up to now. For the
results, this only implies another initial (laminar) mixing layer width in the
outflow buffer area. As already discussed at the end of the previous chapter,
we solely employ the dynamic eddy viscosity model in the remainder of this
thesis. Finally we mention that the Reynolds stress tensor in this chapter
refers to Rij = 〈ρui ρuj/ρ̄〉 − 〈ρui〉〈ρuj〉/〈ρ̄〉 according to eq. (5.17).
In order to be able to compare the results for all settings mentioned above,

we employ the coordinate X1 = x1 − xi where xi refers to the inflow location.
For the two long streamwise domain settings, the time histories of the basic
filtered flow variables and for example the dynamic coefficient Cd have been
recorded at six centerline locations. For convenience, in the rest of this chapter
these equidistant locations are denoted by Xe1, . . . ,Xe6 and are specified in
Table 6.2. Note that Xe5 and Xe6 are only relevant in the longer domain. For
a quantity in the turbulent regime it turned out to make not much difference
which of the four locations Xe3 to Xe6 is taken. In the next section we describe
and discuss some results that change significantly when the LES is performed
on a wider (and longer) domain compared to the minimal mixing layer used
up to now.
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6.2 Wider domain

Similarly as in the minimal channel study in [45], the computational domain
up to now has been very restricted in spanwise direction. The domain extent
for both homogeneous directions in the minimal channel is taken equal to only
a single fundamental wavelength. Translated to the present spatial setting,
the equivalent would be to perform a simulation on the narrow computational
domain used up to now. Here we show results of cases W and WL which
involve a wider (and longer) domain than that of the S setting.
We start with the WL case. In Figure 6.1 a sequence is shown of ρu1 time

signals for all six evaluation locations Xe1 to Xe6. These locations cover the
whole streamwise region. The LES is started from a laminar mixing layer. As
illustrated with the dashed line, one can clearly distinguish at which time the
inflow perturbation reaches each downstream location. The upper plot shows
the situation in the laminar regime. The signal is approximately periodic with
period 85 which corresponds to the LST mode with largest period 4 TF . The
four times smaller mode with period TF = 21 is hardly visible, similarly as
found for the LES results in case S. The next two locations display regular
behaviour in time which is alternated with a more complex signal.
Beyond the second half of the domain, i.e., downstream of Xe4, the signal

is no longer regular in time while its statistics are about independent of the
streamwise coordinate X1 : the irregular fluctuating signals all have about the
same mean and standard deviation. This is clear from the lower three plots of

0 500 1000 1500 2000 2500
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Figure 6.1: Centerline ρu1 as a function of time at streamwise locations Xe1 =
52, . . . ,Xe6 = 425 (in top-down order) for setting WL.
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Figure 6.1. We have put a dotted line at time t = 765 at which the statistical
sampling starts. The inflow signal has traversed the whole streamwise domain
by then.
In order to consider these time history signals in more detail, we com-

pute the spectrum at the two streamwise locations, i.e., Xe1 and Xe6. The
results are displayed in Figure 6.2. The spectrum is based on the time in-
terval [765, 1191] which covers 20 TF . It is plotted against the ‘normalized’
period T/TF to consider the spectral contributions with respect to fluctua-
tion period T. The periods of the modes that are perturbed at the inflow
boundary are indicated in the figure by TF , TS1(= 2 TF ) and TS2(= 4 TF )
respectively. These correspond to the fundamental, the first and second sub-
harmonic modes. The periods of all other modes that are perturbed at the
inflow boundary coincide with one of these.
The dominant mode at Xe1 is the fundamental mode. Both subharmonic

modes are important and become dominant when moving downstream to re-
spectively Xe2 and Xe3. According to linear stability theory, the spatial and
temporal behaviour in the laminar and transitional region is related by means
of the convective velocity [78]. This gives an indication that the first pairing
takes place before Xe2 and the second pairing before Xe3. Also, we note that
the second subharmonic is the dominant mode for the signals of Xe3 and all its
downstream locations. So, the inflow perturbations turn out to be very per-
sistent. This is a well-known property of mixing layers as already mentioned
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Figure 6.2: Temporal spectrum of the centerline ρu1 signal at Xe1 (—) and Xe6
(· · ·) as a function of the period of the mode normalized with TF and based on
the signal from t = 765 until 1191 for setting WL.
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in Chapter 3.
The behaviour of the spectrum tail has some preference for modes with

periods 2/3 TF and 1/2 TF for Xe1 while the Xe6 signal globally has a sub-
stantially higher contribution at low T/TF which displays that much more
small scales are present. The tail of the spectrum on the left side of the figure
still contains fluctuations which may be due to the fact that the time signal is
collected exactly ten times per fundamental period. According to turbulence
theories the spatial spectrum of high-Reynolds number homogeneous turbu-
lence may contain an inertial range with slope -5/3. Some studies suggest
that this is also valid for the temporal spectrum [34]. We come back to this
in the next section. The slope in the tail of the present spectrum behaves as
k−4
t (see straight line). For comparison, we also included a line with a -5/3
slope. Finally we remark that the spectrum tail of the Xe5 signal behaves
approximately the same as for Xe6.

Next we show some differences between the narrow and wide domain simu-
lations. We first focus on the time development of the instantaneous dynamic
coefficient. The dynamic coefficient is only averaged over the homogeneous
spanwise direction. It fluctuates as a function of time and the streamwise co-
ordinate. For caseW, the spanwise averaging is done over a larger domain. We
expect a reduction of the fluctuations for the wider domain LES. Indeed, the
standard deviation based on the Cd time signal of all available Xe stations for
theW setting is 15 to 45% smaller than for case S. So, the spanwise extension
corresponds to a smoother dynamic coefficient. As a result, the Cd signal of
S is clipped about five times more for the two downstream locations (Xe2 and
Xe3) compared to case W.

As already mentioned in the beginning of this chapter, in the mixing layer
study described in [21] a larger amount of three-dimensional structures was
observed when the spanwise domain was enlarged. The narrow and wide
domain findings regarding the amount of three-dimensional flow patterns are
shown in Figure 6.3 for S andW. The streamwise vorticity is suitable to study
the three-dimensionality of the flow. Both centerplanes are plotted at equal
scales such that the spanwise extent can directly be compared. The LES is
started from a laminar mixing layer field independent of x3 and with zero
spanwise velocity. So, initially the streamwise vorticity equals zero. It is
clear from the figure that the gradients are higher for W. The extremes in the
positive and negative values are approximately a factor two larger for W than
for S. So, this supports the idea that more three-dimensionality is present in
the mixing layer simulation in the wider domain.
We subsequently show some results that are based on statistical sampling.

This is done for the cases S, W and WL that all concern an LES with a low
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Figure 6.3: Streamwise vorticity at t=3231 for S (upper) and W (lower) in the
centerplane x2 = 0. TheX1 is in horizontal direction and the contour levels display
negative (—) and positive (· · ·) values for ±(0.03, 0.06, . . . , 0.21). The domain is
duplicated in the spanwise direction in order to give a better visual impression of
the flow topology.

Reynolds number. The normalized momentum thickness results are shown
in Figure 6.4 and display a larger growth rate for the wider domain LESs in
agreement with numerical studies reported in [4] and [21]. The longer domain
result ofWL displays a long linear growth with the same growth rate asW. The
normalized growth rate, αn, of W and WL equals 0.028 and is approximately
45% larger than the growth rate of S and 35% larger than the DNS value. It
is just outside the growth rate interval based on experimental data mentioned
in Chapter 3: [0.014, 0.025]. However, this interval only takes into account
so-called unforced experiments [29]. A slightly higher momentum thickness
growth rate (0.029) arises, among others, in the mixing layer experiments
of [44]. In the figure, we have included two straight lines with slopes that
correspond to growth rates from two experiments [44, 67]. Concluding, both
growth rates found for the different LES settings have equivalents in physical
experiments. The relatively high value for the growth rate of the wide-box
LES suggests a closer connection to the experiment in [44]. A higher value
for the growth rate of a wider mixing layer is also found in the numerical
studies from [4] and [21]. In [4] it was conjectured that the more highly three-
dimensional structures in the larger domain are responsible for the difference
in the similarity states (the presence of these structures is less dominant for the
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Figure 6.4: Normalized momentum thickness, θ Uc/∆U, as a function of X1 for
S (—), W (−−) and WL (−·). The straight lines (· · ·) indicate the growth rates
of the experiments from [44] (slope 0.029) and [67] (slope 0.021).

smaller domain). Furthermore, in [21] it was found that more helical pairings
were present in the wider domain simulation. This appears to correspond to
our findings here (see Figure 6.3).
In [10] it appeared that it is particularly important to employ spanwise ave-

raging when considering the development of mixing layers from experiments
with different initial and boundary conditions. In this experimental study, it
is proposed that some of the discrepancies in the past regarding growth rates
and approach to self-similarity may have been caused by the lack of spanwise
averaging in experimental studies. Flow visualisation studies have shown that,
for mixing layers originating from laminar boundary layers, there is an addi-
tional presence of organized streamwise vorticity [51]. The streamwise vorticity
structure was found to have a significant effect on the mixing layer mean and
turbulence properties [9, 70]. Measurements in the mixing layer originating
from turbulent boundary layers have indicated that such large-scale spanwise
variations do not occur in this case. The growth rate of the mixing layer based
on laminar boundary layers was found to be 20% higher than that based on
turbulent boundary layers [9]. Also in [17] the growth rate of the turbulent
boundary layer case was smaller than that of the mixing layer originating from
a laminar boundary layer. In [10] it was suggested that the layer properties
ought to be spanwise averaged in order to adequately study the streamwise
evolution of the mixing layer. We again establish the combination of a larger
growth rate with the presence of a higher level of streamwise vorticity.
Next we consider the Reynolds stress profiles at a streamwise location in

the turbulent regime. In Figure 6.5 we collect all four components from S
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Figure 6.5: Reynolds stress tensor at X1=225 as a function of the normal coordi-
nate normalized with the momentum thickness for settings W (—) and S (−−)
for Rii (i=1-3;a-c) and R12 (d).

and W . The results of WL are not included since it approximately coincides
with the result for W . The R33 component is a factor six larger for W than
for S. So, taking a wider spanwise domain and extra 3D modes strongly af-
fects the fluctuations in spanwise velocity. This is supported by the extra
three-dimensional behaviour that comes into the wider mixing layer as shown
in Figure 6.3. Also the difference between the R12 results is large. Finally we
recall from Figures 2.2.b and c that the total amplitude as well as the con-
tribution from the 3D modes can make a large difference for the downstream
transition process. The self-similarity of the Reynolds stress profiles will be
considered further on in Section 6.4.

Finally the findings from this section are compared with two other com-
putational studies on the influence of the domain size. In ref. [21] a spatial
incompressible mixing layer LES was performed in a domain comparable to
S (with (L1, L2, L3) = (280, 56, 28)) and an LES with a two times wider box.
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These domains turned out to be too short to reach self-similarity, similar to
the present findings from Chapters 3 and 5. The results show that the pro-
files of the variance of the velocity fluctuations become lower and higher for
respectively R22 and R33 in the wider box. This corresponds to the present
findings. The results for R12 are not mentioned in [21]. It was also found that
the mixing layer growth rate is higher for the LES at the wider domain.
In the study reported in [4], the temporal incompressible mixing layer cal-

culation described in [77] was extended by examining the effect of domain
size and initial conditions. LES was used with the Lagrangian dynamic eddy
viscosity model from [62]. Simulations were performed with initial conditions
consisting of random noise as well as due to boundary layer turbulence. The
domain width equals 31 times the initial momentum thickness, which corres-
ponds to the width of S. In both cases, an increase of the streamwise and
spanwise directions resulted in a larger growth rate and a higher peak of the
spanwise velocity variance. The differences in the peaks of R33 were found to
be an indicator of more highly three-dimensional flow patterns in the large-
domain calculations. The use of a smaller domain forced the spanwise rollers
to be two-dimensional during the late stages of the evolution. This resulted in
a regular, well-ordered flow structure. These findings, a larger growth rate, a
higher peak of the spanwise velocity variance and the presence of more three-
dimensional structures for the wider box correspond with the present results.
Next we change to a more complex setting where the Reynolds number is
increased relative to WL.

6.3 Higher Reynolds number

In this section we discuss the results obtained for case WLR. This involves
LES at a Reynolds number that is ten times higher than in the other settings
discussed up to now. The main issue of this section is to consider the changes
at higher Reynolds number. We focus on the presence of smaller scales and
more positive spanwise vorticity. Moreover, we consider the effect on the
dynamic coefficient and the resulting eddy viscosity.
We start with spanwise vorticity snapshots of both long domain simula-

tions. The results are shown in Figure 6.6 for cases WL and WLR. From the
results near the inflow boundary it is clear that the spanwise domain equals
five fundamental wavelengths. Somewhat further downstream, we also observe
modes with the other, longer spanwise wavelengths, which are imposed at the
inflow boundary. These appear to result in a pairing of spanwise structures.
Moreover, it is clear that the flow for WLR contains more small-scale be-
haviour which can be attributed to the higher Reynolds number. Case WL
contains more patches where the spanwise vorticity is almost zero. In particu-



118 6. Towards LES of realistic mixing layers

(a)

(b)

(c)

(d)

Figure 6.6: Pairs of spanwise vorticity at t=765 for WL and WLR in the plane
x3 = −L3/8 with X1 ∈ [0, 515], x2 ∈ [−32, 32] (a,b) and the centerplane (c,d).
The X1 is in horizontal direction and the contour levels display negative (—) and
positive (· · ·) values for ±(0.03, 0.06, . . . , 0.21). Here, the domain is duplicated
in the spanwise direction in order to give a better visual impression of the flow
topology.
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lar the centerplane results display that the small scale behaviour starts further
downstream for WL.

Next we discuss the presence of positive spanwise vorticity. Positive span-
wise vorticity comes into the WL system further downstream than in the
higher Reynolds number simulation. As already argued in Chapter 5, the
presence of positive spanwise vorticity is related to the transition to turbu-
lence. This transition takes place further upstream at the higher Reynolds
number. For comparison, the positive and negative contributions to the span-
wise vorticity are integrated over x3 and the part of the x2-domain where
〈ρu1〉 deviates more than two percent from both free-stream values. On av-
erage, the level of positive spanwise vorticity is a factor of three higher in
the high Reynolds number case, whereas the difference between both negative
spanwise vorticity contributions is small.
For each of the two cases separately the amount and level of small scale

structures are quite constant in the second part of the domain. For case WL,
structures pair in spanwise direction and only two (symmetric) large-scale
structures are present beyond X1 = 325 (see Figure 6.6.c). Similarly as in
the temporal high Reynolds number simulation [104], the turbulent regime in
the centerplane of WLR approaches a situation of homogeneous turbulence
(see Figure 6.6.d respectively Figure 16 in ref. [104]). So, the higher Reynolds
number simulation comes closer to realistic turbulence. Finally we mention
that the higher Reynolds number result contains some low level patches of
vorticity on the upper free-stream side of the mixing layer. These are probably
a result of the relatively low resolution. Their influence on the centerline
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Figure 6.7: Dynamic coefficient Cd at Xe5 as a function of time for WL (—)
and WLR (−−).
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behaviour is assumed to be small.
We have discussed the presence of smaller scales and more positive span-

wise vorticity at higher Reynolds number. We continue with the dynamic
coefficient. In Figure 6.7 part of its time history at Xe5 is shown for sys-
tems WL and WLR. Both signals fluctuate in time and do not display a
regular behaviour. For all six evaluation locations Xe the level of the time-
averaged Cd is 20− 35% higher for WLR. Also the standard deviation of the
WLR signal is 10− 40% higher than for WL. The larger Reynolds number in
the WLR case results in a lower (absolute) viscous flux because it contains a
1/Re term. The increase due to the strain rate is smaller than the factor ten
increase of the Reynolds number. The total effect is a viscous flux which is
lower by a factor two to three.
Although the averaged dynamic coefficient is different for cases WL and

WLR, the resulting effect on other quantities can still be small. We collected
the corresponding LES eddy viscosity and (constant) viscous flux contribu-
tions. In Figure 6.8, the 〈νt〉x3 profile is plotted as a function of x2 atX1 = 321
with νt = ρ̄Cd∆2|Sij(ũ)|. For the WL setting it is almost everywhere below
the corresponding molecular viscosity of 1/Re. Together, these form the basis
for part of the flux: ∂j

(
(1/Re + νt)Sij

)
. The 〈νt〉x3 profile for WLR is of the

same order of magnitude as for WL while the viscous contribution is a factor
of ten lower.
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Figure 6.8: Spanwise averaged eddy viscosity νt = ρ̄Cd∆2|Sij(ũ)| at X1 = 321
and t = 3231 as a function of x2 for WL (—) and WLR (−−). The constant
viscous contribution of 1/Re is also included for both cases (· · ·).
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Before describing results based on time-averaging, we focus on the temporal
spectrum. In Figure 6.2 some centerline streamwise momentum results of WL
were collected. The result at the downstream location Xe6 is next compared to
the high-Reynolds number spectrum. In Figure 6.9 the temporal spectrum at
X6 is plotted for WL and WLR. The slope of the inertial range is much closer
to the theoretical value of −5/3 for WLR. So, as conjectured in the previous
section, a higher Reynolds number contributes to a range with a slope closer
to -5/3.

Finally we discuss some statistical results. From empirical findings in
literature [11], we know that a mixing layer growth rate only depends on
the convective Mach number Mc, free-stream density ratio s = ρ2/ρ1 and
free-stream velocity ratio r = U2/U1. As a result, the normalized momentum
thickness growth rate, αn (see Chapter 3), is independent of the Reynolds
number. In our simulations we found that the momentum thicknesses for
WL and WLR globally coincide. The growth is faster for WLR behind the
inflow boundary, but both values of the growth rate approach each other in
the second half of the domain. The normalized growth rate ofWLR is slightly
lower and equals 0.027. So, although for example the snapshots of spanwise
vorticity are rather different for WL and WLR (according to Figure 6.6), the
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Figure 6.9: Temporal spectrum of the centerline ρu1 signal at Xe6 as a function
of the mode frequency kt for cases WL(· · ·) and WLR (—). The results are
based on the signal from t = 765 until 1191. Also a straight line with slope −5/3
is included (−−).
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momentum thicknesses develop approximately the same. Also the Reynolds
stress tensor profile should be independent of the Reynolds number, as long as
it is considered with respect to the normalized coordinate x2/θ(X1) [41, 77].
The Reynolds stress tensors for WL and WLR only show some differences
around the peak levels.
Summarizing, we recall the quantities that change significantly when the

Reynolds number is increased by a factor ten. The spanwise vorticity displays
more small scales for the WLR case. Moreover, positive vorticity is present
from a more upstream location than in WL. The dynamic coefficient in the
turbulent regime has a larger mean value and standard deviation for WLR.
Besides, we also observed a somewhat larger value for the eddy viscosity 〈νt〉x3.
From the results based on statistical averaging, the momentum thickness does
not change when the Reynolds number is increased. The components of the
Reynolds stress tensor also do not change much. More results ofWL andWLR
are given in the next section where we focus on statistics of the dynamic
coefficient.

6.4 Adapted dynamic model

In this section, we formulate a variant of the dynamic eddy viscosity model.
First we mention how some other studies overcome the artificial mathemati-
cal prescriptions to assure the stability of the dynamic eddy viscosity model.
The LES study in [39] introduces the so-called dynamic localization model.
The method employs an integral equation whose solution yields the model
coefficient as a function of position and time. It can be applied to general
inhomogeneous flows and does not suffer from the artificial mathematical pre-
scriptions of the original formulation described in [37]. We also mention the
study from [62] which combines the statistical and local approaches by accu-
mulating the required averages over flow path lines. This Lagrangian way of
tracking involves a time integration and linear interpolation in space. This
so-called Lagrangian dynamic eddy viscosity model can also be used for the
simulation of inhomogeneous flows in complex geometries.
In Chapter 5 it was found that the dynamic eddy viscosity model is suitable

for LES while the Smagorinsky model produces too much dissipation. The
dynamic coefficient is highly fluctuating in time and space. For the present
study, we consider an alternative formulation where the coefficient is averaged
over time, which is a homogeneous coordinate for the present application.
This idea is supported by the streamwise development of the time-averaged
dynamic coefficient 〈Cd〉t. As we will see further on, its centerplane level
is almost constant over a long streamwise distance. The a priori result of
time-averaging the instantaneous dynamic coefficient globally gives the same
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result as the corresponding a posteriori value where the dynamic coefficient
during the LES is based on its own time-average. In the previous sections,
we discussed the feasibility study for a numerical simulation of the turbulent
mixing layer. This new variant of the dynamic eddy viscosity model may no
longer need the presence of a homogeneous direction in space. As a result, it is
suitable for LES of complex settings. We first consider the time-averaged Cd

from the dynamic formulation used up to now. Then we continue with the
new subgrid-model formulation.

In Figure 6.10 we collected the centerplane time-averaged value of the dy-
namic coefficient Cd from the dynamic eddy viscosity model. It is based on
the time interval [765, 3231] and plotted as a function of the streamwise coor-
dinate. We have given the results for all four settings used up to now. Since
transition starts at a lower value of X1 for WLR, 〈Cd〉t also increases from
zero at an earlier stage. TheWLR value remains higher than WL similarly as
for the instantaneous result in Figure 6.7. From one third of the domain, 〈Cd〉t
only slowly varies with x1. The 〈Cd〉t from the narrow domain case S starts
growing further downstream and does not reach an approximately constant
value. So, the wider box and extra modes are crucial to reach a steady level
of the time-averaged dynamic coefficient. Finally we remark the resemblance
in the results of W and WL. Both have approximately a constant level which
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Figure 6.10: Time-averaged centerplane dynamic coefficient, 〈 Cd 〉t, as a function
of X1 for S (—), W (−−), WL (· · ·) and WLR (+) and the value of Cm for
WCm at t=3231 (−·).
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corresponds to a Smagorinsky constant of CS = 0.12. The length of the flow
domain does not affect the time-averaged dynamic coefficient, provided it is
sufficiently long. TheWLR value for 〈Cd〉t is somewhat larger and approaches
a CS equal to approximately 0.13. This value was also found for the average
dynamic coefficient of the dynamic eddy viscosity model LES of the temporal
mixing layer at the same (high) Reynolds number [104].
We continue with the formulation of the new subgrid-model introduced

above. The new setting, referred to as WCm, comprises caseW with an adap-
tation for the dynamic coefficient. In first instance, the dynamic coefficient Cd

in the dynamic eddy viscosity model is replaced by a mean coefficient Cm

which is defined as:

Cm(x1, x2, t) =
1
t

∫ t

0
Cd(x1, x2, t

′)dt′ (t > 0), (6.1)

where Cd equals the dynamic coefficient for the dynamic eddy viscosity model
(see equation (5.13)):

Cd(x1, x2, t) =

〈
MijLij

〉
x3〈

MijMij

〉
x3

. (6.2)

Based on the 〈Cd〉t results from Figure 6.10, we expect that Cm approaches a
constant (x1, x2)-dependent profile for increasing time. As a result, the span-
wise averaging may no longer be necessary. This opens possibilities for complex
flow configurations that do not contain a homogeneous spatial direction.
When the coefficient defined in (6.1) is used for a simulation that starts

from a laminar field, the simulation may become unstable due to initial large
transients in Cd. This problem is overcome by introducing a maximum level
for Cd. Thus, we take:

Cm(x1, x2, t) =
1
t

∫ t

0
min{Cd(x1, x2, t

′), 1.0}dt′.

The upper boundary of 1.0 is an order of magnitude higher than the Cd value
in Figure 6.7. This adaptation is only necessary during the initial part of the
LES. Furthermore, Cd is still clipped as well. The new model is about 30%
cheaper than the original dynamic eddy viscosity model due to the fact that is
only updated each time step. The computational overhead of the new model
can even be improved by decreasing the frequency of updating Cd since its
profile converges after some time. It is noted that an even better alternative for
the dynamic coefficient may be the separate time-averaging of the nominator
and denominator in formula (6.2). This alternative is closer to the temporal
equivalent from [104] where both N and D are separately averaged over the
two homogeneous directions x1 and x3. Besides, it probably no longer has the
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problem of extremely high Cd values because the (time-averaged) denominator
may have less chance to be very small.
In Figure 6.10 we have also included the centerline value of Cm throughout

the streamwise domain. It is very close to the time-averaged Cd from W. The
deviation could partly be due to the fact that time-sampling of W is started
at t = 765. As a result, the contribution just after initiation is not taken into
account while it is in WCm. We next focus on the dynamic coefficient in the
turbulent regime of W and WCm and its effect on the turbulent stress tensor.
The x2-profiles of the modeled 〈ρ̄τ12〉 as well as Cm (from WCm), the in-

stantaneous Cd and time-averaged 〈Cd〉t (fromW ) are collected in Figure 6.11.
It is clear that the instantaneous Cd from case W is fluctuating. Its time-
average, 〈Cd〉t, approximately coincides with Cm in the centerline region. We
again recognize the CS = 0.12 level already mentioned for the time-averaged
centerline coefficient in Figure 6.10. Outside this region, Cm may become
larger, but the resulting streamwise subgrid flux remains very small there
anyway. So, the relatively high value of the dynamic coefficient, which is due
to the fact that the denominator of Cd is small in the outer mixing layer region,
does hardly affect the resulting flux. We also mention that the centerplane

(a)

−20 −15 −10 −5 0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(b)

−20 −15 −10 −5 0 5 10 15

−10

−8

−6

−4

−2

0

x 10
−5

x
2

Figure 6.11: Averaged profiles for W (—) and WCm(−−) at X1 = 225 as a
function of x2. The dynamic coefficient Cm from WCm is shown together with
an instantaneous Cd (t = 3231;−·) and 〈Cd〉t from W in (a). The modeled
〈ρ̄τ12〉 is displayed in (b).
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subgrid flux fromW and WL is of the same order of magnitude as the viscous
flux (see Figure 6.8). Finally, although the instantaneous streamwise subgrid
flux clearly differs, the difference between 〈ρ̄τ12〉 profiles of W and WCm is
small (less than 10%).

Next we discuss the effect of Cm on some statistical quantities. The mo-
mentum thickness hardly shows any change compared to that of setting W.
The deviation between the result of W and WCm is within two percent. We
continue with a plot of the streamwise development of peak values of the
Reynolds stress tensor for all cases introduced here. From the results shown
in Figure 6.12, it is clear that the Reynolds stress tensor components for W
and WCm are approximately equal. The difference in the second half of the
streamwise domain is below five percent for all components. Similarly as in
Figure 6.10 also the WL result is close to the other low Reynolds number
cases. The narrow-domain results of S are not included. Similarly as the DNS
results from Figure 3.4, the results of S hardly display the constant peak level
in streamwise direction which is required for self-similarity.
Except for R33, the higher Reynolds number in WLR results in a stronger

increase of the Reynolds stress tensor peak values close after the inflow bound-
ary. The high Reynolds number result approaches that of the others between
X1 = 150 and 200. Whether further downstream either the WL or the WLR
Reynolds stress peak value is higher depends on the component. In particu-
lar this difference is largest in the second half of the streamwise domain for
R33. The width of the profiles for WL and WLR approximately corresponds.
However, throughout the second half of the domain, the peak values of R33
differ by about 20% and 10% or less for the other components. We recall
that a large difference is also found in the spanwise behaviour of the spanwise
vorticity for WL and WLR in Figure 6.6.
Finally we note that the high Reynolds number results do not clearly show

a better behaviour regarding self-similarity. The streamwise turbulence in-
tensity R11 required the least streamwise distance to become approximately
self-similar, followed by the normal turbulence intensity R22. The peak value
of the first component R11 only changes with about 5% throughout the sec-
ond half of the domain. The development of R33 does not display signs of
self-similarity and the streamwise variations in R12 are rather large as well.
We note the striking decrease of R33 just behind the inflow boundary. This
again stresses the sensitivity of this component with respect to the inflow con-
dition. The wide box results clearly show signs of self-similarity, which is not
the case for setting S. So, the spanwise extent should be large enough in order
to approach self-similar behaviour of the Reynolds stress tensor at all, and
the cumbersome results for R33 and R12 in this respect may require further
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Figure 6.12: Reynolds stress tensor peak values as a function of the streamwise
coordinate for settings W (—), WCm (−−), WL (−·), and WLR (· · ·) for
Rii (i=1-3;a-c) and −R12(d).

variations in the size of the domain. This is also necessary to reach a more or
less constant level of the averaged dynamic coefficient (see Figure 6.10).
Concluding, we have observed that the highly fluctuating dynamic coef-

ficient of W mainly appears to be relevant for the instantaneous behaviour
of the simulation. The time-averaged equivalent of WCm results in about
the same statistical behaviour. The CPU time can be lowered even more by
decreasing the frequency of updating the time-averaged coefficient. Together
with its suitability for flows that no longer contain any homogeneous direction,
it is worth to further explore the possibilities of this subgrid-model.

6.5 Conclusions

The main topic of this chapter was an investigation of the suitability of LES
for more realistic mixing layers, in particular in a larger domain and at a
higher Reynolds number using the dynamic eddy viscosity model. In the
previous chapters, we employed the setting of the ‘minimal mixing layer’,
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where the spanwise extent was equal to a single fundamental wavelength. This
preparatory study has been very useful to consider some features which are
typical for the mixing layer and for turbulent flow. From the results of the
present chapter we found that the crucial step towards a realistic mixing layer
includes the increase of the spanwise computational domain. The main change
implied by the wider domain and the corresponding extra inflow perturbations
is the enhanced three-dimensionality of the turbulence, which results in an
increase in momentum thickness growth rate.

Similarly as in other studies, the present findings show the presence of
more three-dimensional structures in a wider computational box. This was
concluded from the higher extremal values of the streamwise vorticity, from
the more complex structures in the centerplane spanwise vorticity and from
the substantially larger spanwise turbulence intensity. Further studies with
other spanwise domain lengths should be performed in order to investigate
the influence more thoroughly.

The spanwise turbulence intensity R33 did not show any self-similar be-
haviour for the short and long streamwise domains. All other Reynolds stress
tensor components displayed some self-similarity for settings that involved a
wider box. The results did not change much when the streamwise domain
was extended. The results based on a ten times larger Reynolds number did
not show signs of a better self-similarity. So, we can conclude that the major
contribution towards an LES that contains self-similar behaviour comes from
the increase in the spanwise domain extent.

Next to the main issue, the feasibility study of the mixing layer, this chap-
ter was also devoted to the introduction of a new subgrid-model. Most settings
described in this chapter employed the dynamic eddy viscosity model. Based
on the approximate independence of the time-averaged dynamic coefficient of
the streamwise coordinate, the dynamic coefficient Cd was replaced by its time
average in the new subgrid-model. The advantage of this adapted model is
the fact that it may be applied to flows that no longer contain a homogeneous
direction. The new model only has a minor effect on statistical results like the
momentum thickness and Reynolds stress tensor as well as the time-averaged
turbulent stress tensor. It is some thirty percent cheaper than the original
dynamic eddy viscosity model due to the fact that the dynamic coefficient is
only updated each time step. This can even be improved by decreasing the
frequency of updating Cd. It can be concluded that it is worth to further ex-
plore the possibilities of this model. Finally, a number of recommendations
for future research are pointed out in the next section.



6.6. Recommendations for future research 129

6.6 Recommendations for future research

Since DNS cannot be performed for most practically relevant flows, the devel-
opment of LES methods for complex flows is an important issue. As a first
step, we have performed LES for a high Reynolds number mixing layer at low
convective Mach number in a large computational domain. A next step in this
research could be the performance of LES at higher convective Mach numbers.
The growth rate reduction that already has been observed for the temporal
mixing layer and in several physical experiments of the mixing layer can then
also be studied for the spatial setting. Furthermore it would be interesting to
find out whether self-similarity is reached to the same extent. In particular
this might help to understand why, in contrast to the other components of the
Reynolds stress tensor, the spanwise turbulence intensity has not shown signs
of self-similarity in the simulations described here.
The underlying idea of this thesis involved a feasibility study of the spatial

mixing layer. We one by one recall all constraints introduced to enable a
numerical simulation: the domain extent, Reynolds number and resolution. It
was found that the extent of the short streamwise domain is long enough to
display self-similarity in the momentum thickness and streamwise and normal
turbulence intensities. The case with the longer streamwise domain can be
regarded as a verification for the behaviour of these statistical quantities. The
spanwise extent as well as the inclusion of the extra inflow perturbations that
could be taken into account played a major role in Chapter 6. The confined
mixing layer on the single spanwise wavelength domain displayed results that
were dominated by a lack of spanwise development. As a result, the level of
the spanwise velocity fluctuations was too low. It is necessary to further verify
the effect of the spanwise extent of the computational domain.
As a final step in the effort to reach a numerical simulation of the laboratory

mixing layer, the Reynolds number was increased. Mainly some instantaneous
properties were affected by this change. At the second half of the domain, a
minor effect was present in the Reynolds stress tensor, except for the third
component where the influence was larger. Another increase in the Reynolds
number should be made to verify whether the influence of the present Reynolds
number already is of minor importance. Then it can be interpreted as a zero
molecular viscosity situation.
The development of numerical research in turbulence for the past decade

has - together with the increase in computational effort - resulted in a shift of
temporal settings to spatial settings. Several characteristic features of tempo-
ral mixing layers were also found for spatial mixing layers. The introduction
of the dynamic procedure has substantially improved the performance of LES.
As a result, LES has become a tool to answer many of the still open ques-
tions in turbulence. Simultaneously, several new questions come up. Most of
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them deal with more realistic turbulent mixing layers and other shear flows,
that arise in for example combustion and settings with complicated geome-
tries. Thus the subject of turbulence will keep us busy for at least some extra
decades.



Appendix A

Evaluation details

The aim of this appendix is to define basic elements from which all terms in
the turbulence kinetic energy equation can be built. These terms should be
computed during the DNS. Therefore we prefer a conveniently arranged imple-
mentation. We first recall the turbulence kinetic energy equation (see (3.3)):

∂j(ρ̄k ũj) = −ρu′′
i u

′′
j ∂j ũi − 1/2∂jρu′′

i u
′′
i u

′′
j + ∂ju′′

i σij − ∂jpu′′
j

+ p ∂ju
′′
j − σij ∂ju

′′
i , (A.1)

In order to have a clear and simple implementation of the evaluation we
keep the number and complexity of the basic elements small. The following
eight groups of quantities are computed in order to evaluate all other terms of
the turbulence kinetic energy equation (A.1):

A1 = (ρ̄, ρu1, ρu2, p̄)
A2 = (ρu1u1, ρu2u2, ρu3u3, ρu1u2)
A3 = (pu1, pu2)

A4 = p∂juj

A5 = (σ11, σ22, σ12)

A6 = σij∂jui

A7 = (uiσi1, uiσi2)
A8 = (ρuiuiu1, ρuiuiu2).

Because of the assumption of spanwise symmetry, several quantities equal zero
by definition and thus are not taken into account. For example,

ũ3 = σ13 = ρu1u3 = ρu3u3u3 ≡ 0.
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The terms in (A.1) can be constructed from the quantities A1 − A8 using the
Reynolds conditions [64]. These conditions state that

af + bg = af + bg

fg = fg

∂tf = ∂tf

∂jf = ∂jf,

for arbitrary, smooth functions f(x, t) and g(x, t) and arbitrary constants a
and b as can readily be verified. The relation f = f, used often, can easily be
derived from these conditions.
Finally we note that when A6 is computed in a straightforward way, nine

terms need to be taken into account. The expression can be reduced when
employing some specific properties of the strain rate tensor (see (2.5)):

σij∂jui = Sij ∂jui/Re

= 1/2S2
ij/Re

= (S2
11 + S2

22 + S11S22 + S2
12 + S2

13 + S2
23)/Re.

Here we used the symmetry of the strain rate tensor and the fact that its trace
equals zero. In this appendix we have focused on evaluation details regarding
the computation of the terms in the kinetic energy equation during the DNS.
The elements A1−A8 form basic blocks from which all terms of the turbulence
kinetic energy equation can be evaluated in a simple way.
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Genèse, Agard Report, 819, 1997.

[49] Kolmogorov A.N., The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR,
30, 301-305. Reprinted in 1991, Proc. R. Soc. Lond. A, 434, pp. 9-13,
1941.

[50] Kuerten J.G.M., Geurts B.J., Vreman A.W. & Germano M.,
Dynamic inverse modeling and its testing in large-eddy simulations of
the mixing layer, Phys. Fluids, 11(12), pp. 3778-3785, 1999.

[51] Lasheras J.S., Choi H. & Maxworthy T., On the origin and evolua-
tion of streamwise vortical structures in a plane, free shear layer, J. Fluid
Mech., 172, pp. 231-258, 1986.

[52] Launder B.E. & Sharma B.I., Application of the Energy Dissipation
Model of Turbulence to the Calculation of Flow Near a Spinning Disc,
Letters in Heat and Mass Transfer, 1(2), pp. 131-138, 1974.

[53] Lele S.K., Compressibility effects on turbulence, Ann. Rev. Fluid
Mech., 26, pp. 211-254, 1994.

[54] Lesieur M., Turbulence in Fluids, 3rd edition, Kluwer Academic Pub-
lishers, Dordrecht, 1997.

[55] Li N., Balaras E. & Piomelli U., Inflow conditions for large-eddy
simulations of mixing layers, Phys. Fluids, 12(4), pp. 935-938, 2000.

[56] Lilly D.K., A proposed modification of the Germano subgrid-scale clo-
sure method. Phys. Fluids A, 4, pp. 633-635, 1992.

[57] Liu S., Meneveau C. & Katz J., On the properties of similarity
subgrid-scale models as deduced from measurements in a turbulent jet,
J. Fluid Mech., 275, pp. 83-119, 1994.

[58] Liu Z. & Liu C., Fourth order finite difference and multigrid methods
for modelling instabilities in flat plate boundary layers, Computers and
Fluids, 23, pp. 955-982, 1994.

[59] Mansour N.N., Kim J. & Moin P., Reynolds-stress and dissipation-
rate budgets in a turbulent channel flow, J. Fluid Mech., 194, pp. 15-44,
1988.

[60] Mehta R.D., Effect of velocity ratios on plane mixing layer develop-
ment: Influence of the splitter plate wake, Exp. Fluids, 10, pp. 194-204,
1991.



138 Bibliography

[61] Mehta R.D. & Westphal R.V., Near-field turbulence properties of
single- and two-stream plane mixing layers, Exp. Fluids, 4, pp. 257-266,
1986.

[62] Meneveau C., Lund T.S. & Cabot W.H., A lagrangian dynamic
subgrid-scale model of turbulence, J. FLuid Mech., 319, pp. 353-385,
1996.

[63] Moin P. & Kim J., Tackling Turbulence with Supercomputers, Scien-
tific American, 276(1), pp. 62-68, 1997.

[64] Monin A.S. & Yaglom A.M., Statistical Fluid Mechanics, Mechanics
of Turbulence Volume 1, MIT Press, Cambridge, 1977.

[65] Moser R.D. & Rogers M.M., The three-dimensional evolution of a
plane mixing layer: pairing and transition to turbulence, J. Fluid Mech.,
247, pp. 275-320, 1993.

[66] Moser R.D., Rogers M.M. & Ewing D.W., Self-similarity of time-
evolving plane wakes, J. Fluid Mech., 367, pp. 255-289, 1998.

[67] Oster D. & Wygnanski I., The forced mixing layer between parallel
streams, J. Fluid Mech., 123, pp. 91-130, 1982.

[68] Papamoschou D. & Roshko A., The compressible turbulent shear
layer: an experimental study, J. Fluid Mech., 197, pp. 453-477, 1988.

[69] Piomelli U., Zang T.A., Speziale C.G. & Hussaini M.Y. On the
large-eddy simulation of transitional wall-bounded flows, Phys. Fluids
A, 2, pp. 257-265, 1990.

[70] Plesniak M.W., Mehta R.D. & Johnston J., Curved two-stream
turbulent mixing layers: three-dimensional structure and streamwise
evolution, J. Fluid Mech., 270, pp. 1-50, 1994.

[71] Poggie J. & Smits A.J., Large-Scale Coherent Turbulence Structures
in a compressible Mixing Layer Flow, AIAA P., 96, pp. 1-11, 1996.

[72] Poinsot T.J. & Lele S.K., Boundary conditions for direct simulations
of compressible viscous flows, J. of Comp. Phys., 101, pp. 104-129, 1992.

[73] Ragab S.A. & Wu J.L., Linear instabilities in two-dimensional com-
pressible mixing layers, Phys. Fluids, 1, pp. 957-966, 1989.

[74] Ragab S.A. & Sheen S., The nonlinear development of supersonic
instability waves in a mixing layer, Phys. Fluids A, 4 (3), pp. 553-566,
1992.



Bibliography 139

[75] Reynolds O., An experimental investigation of the circumstances
which determine whether the motion of water shall be direct and sin-
uous, and the law of resistance in parallel channels, Phil. Trans. Roy.
Soc., pp. 51-105, 1883.

[76] Rodi W. & Mansour N.N., Low Reynolds number k − ε modeling
with the aid of direct simulation data, J. Fluid Mech., 250, pp. 509-529,
1993.

[77] Rogers M.M. & Moser R.D., Direct simulation of a self-similar tur-
bulent mixing layer, Phys. Fluids, 6(2), pp. 903-923, 1994.

[78] Sandham N.D. & Reynolds W.C., A numerical investigation of the
compressible mixing layer, Report TF-45, Stanford University, Califor-
nia, 1989.

[79] Sandham N.D. & Reynolds W.C., Three-dimensional simulations
of large eddies in the compressible mixing layer, J. Fluid Mech., 224,
pp. 133-158, 1991.

[80] Sandham N. & Kleiser L., The late stages of transition to turbulence
in channel flow, J. Fluid Mech., 245, pp. 319-348, 1992.

[81] Sarkar S., Erlebacher G., Hussaini M. & Kreiss H., The analysis
and modeling of dilatational terms in compressible turbulence, J. Fluid
Mech., 227, pp. 473-493, 1991.

[82] Shao L., Sarkar S. & Pantano C., On the relationship between
the mean flow and subgrid stresses in LES of turbulent shear flows,
Phys. Fluids, 11(5), pp. 1129-1248, 1999.

[83] Smagorinsky J., General circulation experiments with the primitive
equations, Mon. Weather Rev., 91, pp. 99-164, 1963.

[84] Smits A.S., Picture of the Week (internet) pages, Princeton University.

[85] Speziale C.G., Sarkar S. & Gatski T.B., Modeling the pressure-
strain correlation of turbulence: An invariant dynamical systems ap-
proach, J. Fluid Mech., 227, pp. 245-272, 1991.

[86] Speziale C.G., Analytical methods for the development of Reynolds-
stress closures in turbulence, Ann. Rev. Fluid Mech., 23, pp. 107-157,
1991.

[87] Slessor M.D., Bond C.L. & Dimotakis P.E., Turbulent shear-layer
mixing at high Reynolds numbers: effects of inflow conditions, J. Fluid
Mech., 376, pp. 115-138, 1998.



140 Bibliography

[88] Sondergaard R., Mansour N.N. & Cantwell B.J., The effect of
initial conditions on the development of temporally evolving planar three
dimensional incompressible wakes, Application of Direct and Large Eddy
Simulation to Transition and Turbulence, AGARD Conference Proceed-
ings 551, pp. 26.1-26.12, 1994.

[89] Spalart P.R., Direct simulation of a turbulent boundary layer up to
Rθ = 1410, J. Fluid Mech., 187, pp. 61-98, 1988.

[90] Stewartson K., The theory of laminar boundary layers in compressible
fluids, Oxford Mathematical Monographs, 1964.

[91] Streett C.L. & Macaraeg M.G., Spectral multi-domain for large-
scale fluid dynamic simulations, Appl. Numer. Math., 6, pp. 123-139,
1989.

[92] Streng M., Broeze J., Kuerten H. & Geurts B., De (on)bereken-
baarheid van turbulentie, Nederlands tijdschrift voor Natuurkunde, 62,
pp. 23-26, 1996.

[93] Tavoularis S. & Corrsin S., Experiments in nearly homogenous tur-
bulent shear flow with a uniform mean temperature gradient. Part 1,
J. Fluid Mech., 104, pp. 311-347, 1981.

[94] Tennekes H. & Lumley J.L., A first course in turbulence, The MIT
Press, Cambridge, 1974.

[95] Townsend A.A., Structure of Turbulent Shear Flow, Cambridge Uni-
versity Press, Cambridge, England, pp. 188-230, 1976.

[96] Van Dyke M., An album of fluid motion, The Parabolic Press, Stan-
ford, California, 1982.

[97] Vreman A.W., Geurts B.J. & Kuerten J.G.M., Subgrid-modelling
in LES of compressible flow, Direct and Large-Eddy Simulation I, Eds.
P.R. Voke, L. Kleiser & J.P Chollet, pp. 133-144, 1994.

[98] Vreman B., Geurts B. & Kuerten H., On the formulation of the dy-
namic mixed subgrid-scale model, Phys. Fluids, 6, pp. 4057-4059, 1994.

[99] Vreman B., Geurts B. & Kuerten H., A priori test of Large Eddy
Simulation of the compressible mixing layer, J. Eng. Math., 29, pp. 299-
327, 1995.

[100] Vreman B., Geurts B. & Kuerten H., Subgrid-modelling in LES
of compressible flow, Applied Scientific Research, 54, pp. 191-203, 1995.



Bibliography 141

[101] Vreman A.W., Direct and Large-Eddy Simulation of the Compressible
Turbulent Mixing Layer, Ph.D. Dissertation, University of Twente, The
Netherlands, 1995.

[102] Vreman A.W., Geurts B.J. & Kuerten J.G.M., Comparison of
numerical schemes in Large Eddy Simulation of the temporal mixing
layer, Int. J. Num. Meth. Fluids, 22, pp. 297-311, 1996.

[103] Vreman A.W., Sandham N.D. & Luo K.H., Compressible mixing
layer growth rate and turbulence characteristics, J. Fluid Mech., 320,
pp. 235-258, 1996.

[104] Vreman A.W., Geurts B.J. & Kuerten J.G.M., Large-Eddy Simu-
lation of the turbulent mixing layer, J. Fluid Mech., 339, pp. 357-390,
1997.

[105] Wasistho B., Geurts B.J. & Kuerten J.G.M., Simulation tech-
niques for spatially evolving instabilities in compressible flow over a flat
plate, Computers and Fluids, 26, pp. 713-739, 1997.

[106] Wasistho B., de Bruin I.C.C., Geurts B.J. & Kuerten J.G.M.,
Direct numerical simulation of subsonic spatially developing shear flows,
Advances in Turbulence VII, pp. 175-178, Kluwer Academic Publishers,
1998.

[107] Wilcox D.C., Turbulence Modeling for CFD, DCW Industries, Cali-
fornia, 1994.

[108] Wygnanski I. & Fiedler H., The two-dimensional mixing region, J.
Fluid Mech., 41, pp. 327-361, 1970.

[109] Zang Y., Street R.L. & Koseff J.R., A dynamic mixed subgrid-
scale model and its application to turbulent recirculating flows, Phys.
Fluids A, 5, pp. 3186-3196, 1993.

[110] Zeman O., Similarity in supersonic mixing layers, AIAA J., 30(5),
pp. 1277-1283, 1992.





Acknowledgements

The time for the computations was provided by NCF (‘Stichting Nationale
Computerfaciliteiten’), which is financially supported by NWO (‘Nederlandse
Organisatie voor Wetenschappelijk Onderzoek’). NWO also provided financial
support to give presentations at conferences in France and the United States.

143





Summary

The main focus of this thesis is the numerical simulation of the three-dimen-
sional turbulent mixing layer. Direct numerical simulations (DNS) of the
spatial mixing layer have been conducted to explore the stages towards a fully
developed turbulent flow. In this way, a database of a subsonic turbulent
mixing layer has been generated from which several physical properties can
be extracted. Numerical robustness of the DNS is studied by performing sim-
ulations at different resolutions and at different sizes of the computational
domain. The results originating from two different inflow conditions with
perturbations from either linear stability theory (LST) or of a random na-
ture, exhibited a similar growth rate in the turbulent regime and compare
favorably with data from physical experiments. Helical pairing occurred in
both cases. Several model assumptions of typical Reynolds-averaged Navier-
Stokes (RaNS) approaches were confronted with statistical DNS predictions
and turned out to be quite inaccurate. It appeared that even after relatively
long time-averaging, higher order moments like the Reynolds stress tensor
appeared to display only modest convergence.
Large-eddy simulations (LES) have been conducted in the same computa-

tional domain using several subgrid-models. The results have been compared
with filtered DNS data. The dynamic eddy viscosity model was employed
for the extension towards a realistic configuration, consisting of a large com-
putational domain and a high Reynolds number. A larger growth rate as
well as a higher degree of three-dimensionality was found when the domain
was enlarged in the spanwise direction. The streamwise development of some
Reynolds stress tensor components showed signs of self-similarity. This be-
came particularly clear when the streamwise domain was enlarged as well. In
addition, more small-scale features were observed when the latter case was
repeated at a ten times higher Reynolds number.
In the standard formulation of dynamic subgrid-models, the dynamic co-

efficient fluctuates both in time and space. It appeared that the centerline
value of the time-averaged coefficient remained approximately constant in the
turbulent regime. This triggered the introduction of a subgrid-model which
employs a time-averaged coefficient instead. Statistical results of this model
agree with previous findings. The computational costs decrease since the new
model does not need a frequent update of the coefficient. Because of the
time-averaging, this model may no longer need the presence of a homogeneous
direction in space, which makes it also suitable for many other flows.
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Samenvatting

In dit proefschrift staat de numerieke simulatie van de driedimensionale turbu-
lente menglaag centraal. Om de stadia naar volledig ontwikkelde turbulentie
te bestuderen, zijn directe numerieke simulaties (DNS) van de ‘ruimtelijke’
menglaag uitgevoerd. Dit resulteerde in een database waaruit meerdere fy-
sische eigenschappen van een subsone turbulente menglaag kunnen worden
geëxtraheerd. De numerieke robuustheid van de DNS is vastgesteld door
simulaties bij verschillende resoluties en met verschillende groottes van het
rekendomein uit te voeren. De resultaten van verschillende instroomcondi-
ties met verstoringen uit lineaire stabiliteitstheorie (LST) of juist met een
random karakter, resulteerden in dezelfde groeifactor in het turbulente ge-
bied en komen goed overeen met experimentele resultaten. Spiraalvormige
paring kwam in beide gevallen voor. Verscheidene modelaannames van typi-
sche Reynolds-gemiddelde Navier-Stokes benaderingen zijn met de statistische
DNS-voorspellingen vergeleken en bleken erg onnauwkeurig. Zelfs na relatief
lange tijdsmiddeling convergeerden hogere orde momenten, zoals de Reynolds
spanningstensor, slechts langzaam.
Large-eddy simulaties zijn uitgevoerd in hetzelfde rekendomein met be-

hulp van diverse subgridmodellen. De resultaten zijn vergeleken met gefil-
terde DNS-resultaten. Voor de uitbreiding naar een realistische configuratie,
dat wil zeggen in een groter rekendomein en met een hoger Reynoldsgetal,
is het dynamische eddy-viscositeits model gebruikt. De domeinvergroting in
de dwarsrichting resulteerde zowel in een grotere groeifactor als in een hogere
mate van driedimensionaliteit. De ontwikkeling van sommige componenten
van de Reynolds spanningstensor in de stroomrichting vertoonde tekenen van
gelijkvormigheid. Dit werd vooral duidelijk bij domeinvergroting in de stroom-
richting. Bij herhaling van de simulatie met een tien keer zo groot Reynolds-
getal ontstonden bovendien meer kleinschalige structuren.
In de standaardformulering van dynamische subgridmodellen fluctueert de

dynamische coëfficiënt als functie van tijd en plaats. Op de middellijn bleek
de waarde van de tijdsgemiddelde coëfficiënt bij benadering constant te zijn in
het turbulente gebied. Dit gaf aanleiding tot de introductie van een subgrid-
model dat als alternatief een tijdsgemiddelde coëfficiënt gebruikt. Statistische
resultaten van dit model komen overeen met eerdere bevindingen. De reken-
tijd neemt af, omdat de coëfficiënt in het nieuwe model minder vaak berekend
wordt. Door de middeling over de tijd, kan dit model ook gebruikt worden
als er een homogene ruimtelijke richting is, zodat het ook geschikt is voor veel
andere stromingen.
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